Файл: Проект по производству керамогранита мощностью 2 млн м 2 в год в Свердловской области.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.02.2024

Просмотров: 105

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Оглавление

Введение

1. Технико-экономическое обоснование

1.1. Выбор точки строительства завода

1.2. Выбор сырьевой базы

1.3. Классификация керамического гранита По месту примененияДля различных применений плитка должна иметь необходимые свойства, обеспечивающие ее максимальную функциональность и эстетичность, например морозостойкость, коррозийная стойкость и т. п. по месту применения модно выделить такие типы плитки как: настенная, напольная, для фасада и помещений общего пользования.По составу изделияРазличают три вида:Гомогенный керамогранит – рисунок плитки не подвергается изменению как внутри, так и снаружи за счет пигментирования полностью всей массы.Частично окрашенный керамогранит состоит, как подразумевается, из двух слоев, один из которых окрашен под необходимое дизайнерское решение, а второй выполняется в базовых тонах (светлые оттенки бежевого или коричневого).Керамогранит с дополнительными включениями – в составе его массы содержатся включения или же их добавляют на стадии вторичного прессования. Вследствие этого внешний облик может приобретать более «натуральный» вид, подражая мрамору или раковинам моллюсков.По типу поверхностиМатовый керамогранит. Для получения нужного облика нельзя использовать механическую обработку керамогранитной плитки по завершению обжига. Чтобы уменьшить влияние окружающей среды на поверхность плитки можно покрыть ее специальной глазурью – кристаллином.Полированный керамогранит. Его можно получить при помощи шлифования внешней поверхности плитки, с последующей полировкой.Лаппатированный керамогранит. Достичь нужного эффекта можно частичной полировкой матовой поверхности. Материал приобретает смешанную фактуру матового и полированного слоя.Сатинированный керамогранит. Для получения нужного вида материал обрабатывают слоем минеральных солей. Важно провести эту процедуру перед обжигом. При соблюдении технологии поверхность плитки будет иметь мягкий блеск.Глазурованный керамогранит. По фактуре не различается с обычной глазурованной плиткой, но за основу взят керамогранит, что обеспечивает большие показатели надежности.Керамогранит со структурированной поверхностью. Структуру плитки получают на стадии прессования при помощи специальных пресс-форм, т. к. это наиболее выгодно, чем проводить механическую обработку после стадии обжига.Ректифицированный керамогранит. Такую плитку подвергают механической обработке на станках, для получения точно заданных размеров. Благодаря этой технологии можно сделать нужную поверхность цельной. Швы будут незаметны по всей площади стены, пола и т. д. 1.4. Анализ рынка В результате исследования на тему “Российский рынок керамической плитки и керамогранита: итоги 2019 г., прогноз до 2022 г.», которое провела компания «NeoAnalytics», выяснилось, что на данный момент на рынке производства керамической плитки и керамогранита в Российской Федерации наблюдается застой, изменения в росте или спаде незначительны. Главным фактором влияния на рынок является развитие строительной отрасли.В 2019 году объем рынка керамической плитки и керамогранита составил 200,1 млн. кв. метров в натуральном выражении и 70,2 млрд. руб. в стоимостном выражении. Основной объем рынка составляет отечественная продукция, доля которой в 2019 г. составила 77,2%. Последние два года соотношение на рынке доли производства/импорта сохраняется примерно одинаковое.В 2019 году производство продукции составило 182,8 млн.кв. метров и снизилось на 1,8%. Импорт продукции составил 45,6 млн.кв. метров и снизился на 3,1%. Экспорт продукции составил 28,4 млн.кв. метров и вырос на 17,5%. В 2019 г. российский рынок рос в основном за счет экспорта. Средняя цена производителей составила 239,5 руб. за кв. метр и снизилась за год на 4,4% [7].Основная часть рынка, около 53%, распределена между 6 большими компаниями: ООО «Керама Марацци», ГК «Юнитайл», ООО «Церсанит Трейд», ГК «Эстима», ООО «Квадро Декор», ООО «ЗКС». Всего в России функционирует более 20 компаний по производству керамогранита. 2. Технологическая часть 2.1. Описание технологического процесса 2.1.1 Транспортировка и хранение сырья и материалов Материалы и сырье прибывают при помощи железнодорожного транспорта, затем автомобильный транспорт доставляет их на завод. Все, что поступает на территорию предприятия, проходит регистрацию, где указывается дата и сертификация сырья.Далее сырье располагается на складе. Склады разделены внутри по отделениям стенками. Каждое отделение отмечается соответственно сырью находящемуся в нем. Помещения защищают сырье от атмосферных осадков и пыли. Они классифицируются соответственно с нормами пожарной безопасности и оборудованы необходимыми противопожарными средствами.Некоторые виды сырья могут содержать большое количество примесей, которое необходимо удалить перед использованием. Такое сырье выгружают в специально отведенном месте. На склад или в производство оно может поступить лишь после того, как проведут исследования в лаборатории.Материалы могут поступать на склад в специальных упаковках, в таком случае их маркируют и помещают в сухое помещение.Основное сырье хранят на перегороженных площадках с бетонным настилом. Этот настил обеспечивает защиту сырья от грязи. 2.1.2. Приготовление суспензии пластичных материалов Посторонние породы удаляют из сырья вручную при выборке со склада. Затем глину и каолин отправляют на роспуск в резервуары с пропеллерной мешалкой. Важно наблюдать за загрузкой, т. к. необходимо не допустить, чтобы в роспускную емкость не попали примеси. Количество поступающего сырья контролируется весовым дозатором. Рецепт заносится в базу данных после разработки в лаборатории. Процесс перемешивания происходит непрерывно.Водный раствор дефлокулянта готовят в пропеллерной мешалке и подают в резервуар для роспуска мембранным насосом. Процесс контролируется расходомером.Вся стадия протекает по определенному алгоритму: Подача воды и дефлокулянта в необходимом объеме; Предварительная обработка сырья на глинорыхлителе; Подача сырья по ленточному конвейеру. Готовая суспензия сливается в подземные резервуары, где происходит перемешивание лопастными мешалками. 2.1.3. Приготовление основного шликера и ангоба Общие требования Взвешивание всех сырьевых материалов и объемную дозировку воды перед загрузкой в шаровые мельницы производят в соответствии с рецептом, откорректированным лабораторией с учетом состава и влажности сырья и занесенным в базу данных компьютера.В качестве мелющих тел в шаровых мельницах непрерывного помола используют алубитовые и уралитовые тела различного размера. Приготовление шликера а) Основной шликер приготавливают в мельнице непрерывного действия. Мельницы футерованы износостойкой резиной, в качестве мелющих тел используют уралитовые шары. Для компенсации намола шаров в непрерывных мельницах 1 раз в смену добавляют 200-300 кг мелющих тел.Ревизию шаровых мельниц производят не реже одного раза в 3 месяца. Приготовление шликера осуществляют совместным помолом непластичных материалов (кварцевый песок, полевой шпат) и суспензии пластичных материалов.Загрузка материалов и слив шликера происходят непрерывно. Скорости подачи сыпучих материалов, суспензии пластичных материалов, дефлокулянта и воды задается и регулируется программой в компьютере в мельничном отделении. Кварцевый песок и полевой шпат из весовых бункеров дозируют на горизонтальный ленточный транспортер, через воронку подают на наклонный ленточный транспортер, откуда через воронку подают на реверсивный транспортер. Далее наклонным транспортером непластичные сырьевые материалы поднимают на уровень загрузочных воронок весовых бункеров-дозаторов шаровых мельниц. Во время загрузки непластичных материалов в мельницу, оператор обязан следить за сырьем, поступающим по транспортеру, чтобы исключить попадание в мельницу посторонних материалов. Суспензию пластичных материалов из подземных емкостей отделения роспуска мембранным насосом перекачивают во взвешивающие емкости из нержавеющей стали, из которых насосом подают в приемную воронку мельницы. Воду и 10 % раствор дефлокулянта подают через расходомер в приемную воронку мельниц.Параметры шликера:• влажность шликера - 33-34 %; • плотность шликера - 1,70-1,72 г/см3; • остаток на сите 0,063 - не более 1,0 %;• текучесть через 30 с - не более 50 с (чаша Форда с отверстием 4 мм).Шликер проходит вибросито 1 стадии с сеткой из нержавеющей стали с ячейкой 2 мм, затем вибросито 2 стадии с сеткой из нержавеющей стали с ячейкой 0,5мм.Шликер используют в дальнейшее производство после заполнения бассейна и аттестации его лабораторией.Хранят шликер в подземных емкостях c лопастными мешалками.б) Мельница для переработки возвратных отходов: пресспорошок и полуфабрикат после формования.Соблюдают следующую очередность загрузки компонентов:Возвратные отходы вода триполифосфат натрия (в сухом виде).Подачу сухих компонентов осуществляют электротельфером через загрузочную воронку.Оборотную воду, после мойки БРС, из емкости под БРС закачивают мембранным насосом в загрузочную воронку через расходную емкость мельницы, согласно рецепту.Готовый шликер с разрешения лаборатории сливают в подземную емкость с мешалкой. После заполнения бассейна и его аттестации лабораторией суспензию перекачивают в расходные емкости для шликера из возвратного сырья [12]. Приготовление ангоба По рецепту, утвержденному лабораторией, производят взвешивание и дозировку сырья (магнезит, каолин, вода). Чтобы ангоб прошел контрольное сито № 0,063 его обрабатывают в шаровой мельнице в течение 24 ч. В качестве мелющих тел используют уралитовые шары. Ангоб определенной влажности переливают в резервуар с мешалкой, откуда он попадет в емкости для транспортировки к аппарату для ангобирования. 2.1.4. Приготовление пресс-порошка Пресс-порошок получают путем испарения влаги из шликера в башенной распылительной сушилке.Шликер из подземных емкостей отделения приготовления шликера мембранным насосом перекачивают в расходную мерную напольную емкость из нержавеющей стали через вибросито с двумя сетками: 1сито с размером ячеек 0,5 мм, 2 сито - 0,2мм, и магнитный сепаратор.Плотность подаваемого шликера 1,70-1,73 г/см3 для производства крупного пресс-порошка; 1,65-1,67 г/см3 для производства мелкого порошка. Рекомендуемая текучесть для шликера от 20 до 50 секунд (чаша Форда).Шликер влажностью 33-34 % из нержавеющей расходной емкости подают в БРС насосом высокого давления через фильтр с сеткой из нержавеющей стали с размером ячейки 1 мм. Распыление шликера производят с помощью механических форсунок, при давлении его перед форсунками 1-1,2 МПа. Влага удаляется в потоке теплоносителя. Порошок, состоящий из гранул сферической формы, обеспечивающих хорошую сыпучесть, падает в конусную часть башни и через отверстие в конусном днище высыпается на вибросито с сеткой из нержавеющей стали, с размером ячеек 2 мм. Влажность пресс-порошка после БРС - 4,5-5,0 %. Более мелкие фракции порошка улавливаются циклонами, направляются на роспуск и далее в бассейн с мешалкой на промежуточное хранение, предшествующее стадии получения пресс-порошка. Данная технологическая операция осуществляет частичный возврат потерь материала на БРС.Через систему транспортеров пресс-порошок подают в силос хранения. Перед использованием пресс-порошок должен вылеживаться не менее 48 ч. Из силосов хранения пресс-порошок системой транспортеров подается на линии дозировки для подачи в бункера прессов. 2.1.5. Прессование плиток Прессование плиток производят на гидравлических прессах. На прессах прессуют плитки размером 300x300х8. Прессование квазиизостатическое, двухступенчатое, «лицом вверх».Штампы для лицевой поверхности - металлические, хромированные, при производстве плитки коллекции Standart, всех размеров и металлические обрезиненные при производстве плитки коллекций Premier, Stone, Coral, Trend, Antica всех размеров.Перед началом прессования регулируют все механизмы и приспособления пресса. Штампы пресс-формы устанавливают строго горизонтально.Лицевые и боковые поверхности штампов должны быть ровными, гладкими, без выбоин и царапин, а рифления нижнего штампа четкими.На поверхности нижнего штампа нанесен товарный знак предприятия и страна-изготовитель.Верхний и нижний пуансон необходимо равномерно подогревать. Температура должна быть в пределах 45-60 °С.Давление прессования должно быть в пределах 38,3-44,6 МПа. При прессовании порошок влажностью 4,5-5,0 % загружают в пресс-форму из подающего короба. Подающий короб загружают порошком из бункера и затем равномерно выгружают его в ячейки пресс-формы. Поверхность засыпки не должна иметь неровностей, бугорков, выемок и углублений во избежание недопрессовки и других дефектов на плитке. Лицевые и боковые поверхности штампов должны быть ровными, гладкими или рельефными без выбоин и царапин. Рифления штампов для обратной поверхности плиток также должны быть четкими.Плитки необходимо прессовать с одинаковым давлением для каждого квадратного сантиметра площади поверхности. Прессование производится в два этапа. На первом этапе происходит начальное уплотнение порошка в пресс-форме. Затем на короткое время давление сбрасывают для удаления воздуха и снятия остаточных деформаций. Вторым этапом завершают полный процесс прессования. Чтобы избежать повреждения плитки при выталкивании, торцевая пластина должна быть покрыта резиной. Отпрессованные плитки должны иметь правильную геометрическую форму, четкие грани и углы, однородную структуру в изломе без посторонних включений, трещин, выбоин, а также зазубрин на кромках лицевой поверхности. Обратная сторона плитки должна иметь четкую рифленую поверхность, на которую ставят товарный знак комбината и год выпуска. За 1 минуту осуществляется 10 циклов прессования. Предел прочности при изгибе отпрессованных плиток не менее 0,55 МПа.Не допускается искривление лицевой поверхности плиток.Для обеспечения качественного полуфабриката постоянно проверяют правильность работы очищающего устройства, холодильника, наличие масла. Регулярно очищают пресс-форму и загрузочную каретку от налипшего пресс-порошка.Отпрессованные плитки по ременному транспортеру поступают на люльки вертикальной сушилки по 4 штуки в один ряд. 2.1.6. Сушка плиток Сушку плиток осуществляют в вертикальных люлечных сушилках.Температуру в сушилке поддерживают за счет воздуха, нагреваемого в тепловом генераторе. Нагрев воздуха в тепловом генераторе осуществляют с помощью газовых горелок и регулируют изменениями давления газа, подаваемого на горение.В вертикальном сушиле «Siti» сушку осуществляют при максимальной температуре 120 ºС и продолжительности 80 минут, либо - 135 ºС и продолжительностью

2.2. Технологическая схема производства

3. Расчетная часть

3.1. Исходные данные

3.2. Расчет материального баланса

3.4. Расчет количества воды на роспуск возвратного брака

3.5. Расчет количества вспомогательных материалов

3.6. Расчет необходимого количества оборудования

4. Теплотехническая часть

4.1. Исходные данные

4.2. Теплотехнический расчет печи однократного обжига

5. Охрана окружающей среды от промышленных загрязнений

Введение

5.1. Экологическое обоснование района и площадки строительства

5.2. Экологическое обоснование технологической схемы

5.3. Охрана атмосферного воздуха от загрязнений

5.4. Охрана водоемов от загрязнения сточными водами

5.5. Экологически безопасное обращение с отходами

5.6. Экономическая оценка природоохранных мероприятий

5.7. Анализ рисков чрезвычайных (аварийных) ситуаций

Заключение

6. Электротехническая часть

6.1. Общая характеристика производства

6.2. Определение расчетных нагрузок и выбор силового электрооборудования производства

6.3. Организационно-технические мероприятия по снижению потребления реактивной энергии

6.4. Расчет мощности компенсирующего устройства

6.5. Расчет оплаты за пользование электроэнергией

6.6. Определение технико-экономических показателей производства

7. Режим работы производства, эффективный фонд времени работы оборудования и система планово-предупредительного ремонта

8. Строительная часть

8.1. Географическое месторасположение объекта и основные данные о климате

8.2. Застройка объекта

8.3. Характеристика производственного корпуса

8.4. Отопление

8.5. Водоснабжение

9. Охрана труда

9.1. Краткая характеристика производства

9.2. Классификация производства

Список литературы

6.3. Организационно-технические мероприятия по снижению потребления реактивной энергии


Коэффициент мощности потребителей электроэнергии в настоящее время не нормируется, так как нормирование его не ограничивает потребляемой из сети реактивной энергии.

Поэтому в настоящее время нормируется непосредственно количество реактивной энергии, которую предприятие получает из сети энергоснабжающей организации, что позволяет более рационально осуществлять потребление предприятием реактивной мощности.

Энергоснабжающая организация нормирует экономически обоснованную наибольшую величину реактивной мощности, которую предприятие может получить в период работы энергосистемы в режиме ее наибольшей нагрузки.

Принимаем величину оптимальной реактивной мощности потребителя в часы максимум активной нагрузки энергосистемы (заданную энергосберегающей организацией) равной QЭ.

При этом, поскольку фактическая реактивная мощность потребителя QМ (принимаем ориентировочно QМ = ????Q????) оказывается больше QЭ, то необходимо принять меры к уменьшению получаемой из сети энергосистемы реактивной мощности.

К организационно-техническим мероприятиям, снижающим потребление реактивной мощности, относятся: соблюдение норм расхода электроэнергии по цехам и участкам; систематическая экономия электрической энергии в дневное и ночное время; соблюдение энергобаланса предприятия и контроль за нормой расхода реактивной энергии и др.

К техническим мероприятиям относятся: повышение загрузки асинхронных электродвигателей и замена недогруженных двигателей; сокращение потерь холостого хода электрооборудования путем четкого соблюдения графиков ремонта; сокращение расхода электроэнергии на освещение путем своевременного включения и выключения светильников; использование асинхронных электродвигателей более совершенных типов.

Для уменьшения получаемой от энергосистемы реактивной мощности предусматривается наряду с выполнением указанных организационно-технических и инженерно-технических мероприятий установка на предприятии компенсирующего устройства [19].

6.4. Расчет мощности компенсирующего устройства


Применение дополнительных компенсирующих устройств производится после того, как приняты все меры для естественной компенсации реактивной мощности, отмеченные выше, по согласованию с энергоснабжающей организацией.

Это мероприятие требует дополнительных материальных затрат, однако, оно уменьшает величину реактивной энергии, получаемой предприятием от системы энергоснабжения.

Выбор вида компенсирующего устройства во всех случаях определяется технико-экономическими соображениями и расчетами.

На производственных предприятиях для искусственной компенсации реактивной мощности, как указывалось, применяются синхронные компенсаторы и батареи статических конденсаторов. В данном случае, поскольку установленная мощность проектируемого предприятия незначительна, для этого целесообразно использовать косинусные конденсаторы. Установка конденсаторов, включаемых со стороны низкого напряжения при значительных величинах высокого напряжения, является наиболее целесообразным и экономичным видом искусственной компенсации реактивной мощности.

При искусственной компенсации с применением косинусных конденсаторов повышается коэффициент мощности потребителей электроэнергии на проектируемом объекте.

Реактивная мощность конденсаторов определяется из выражения:

,

где QM – фактическая реактивная мощность потребителя в часы максимума реактивных нагрузок энергосистемы, квар;

QЭ – оптимальная реактивная мощность потребителя в часы максимума активной нагрузки энергосистемы (заданная энергоснабжающей организацией)‚ квар.

Если оптимальная реактивная мощность О, окажется неизвестной, то реактивную мощность конденсаторов в данном случае можно определить исходя из выражения:

квар,

где РMAX ≈ РСР
– заявленная потребителем активная мощность в часы максимума нагрузки энергосистемы (указана в приложении к договору на пользование электроэнергией), кВт;

РСР – средняя активная мощность потребителя в часы максимума нагрузки (ориентировочно принимается РСР = ????Р????);

КТ – коэффициент для определения QK определяется по значению cosφ1=cosφCP и значению cosφ2, который принимаем равным значению cosφ2=0,92.

В этом случае фактическая и оптимальная реактивные мощности могут быть определены по формулам:

квар;

квар,

где tgφМ и tgφЭ – соответственно, фактический и оптимальный заданный энергосистемой «тангенс фи» в часы максимума нагрузки, так как cosφМ = 0,76, то φМ = 40˚; а tgφМ = 0,86; принимаем cosφЭ = cosφ2 = 0,92; φ1 ≈ 23˚; tgφЭ = 0,44; (cosφМ принимаем равным cosφСР).

6.5. Расчет оплаты за пользование электроэнергией


Расчет за получаемую производственным предприятием электроэнергию производится по одноставочному или двухставочному тарифу.

Присоединенная мощность силовых трансформаторов в данном случае находится в пределах до 750 кВ-А, поэтому расчет за пользование электроэнергией производится по одноставочному тарифу.

Стоимость электроэнергии, потребляемой осветительной и силовой нагрузкой предприятия в течение месяца (в рублях), определяется по формуле:

руб.,

где К1 – коэффициент надбавки (+) или скидки (-), зависящий от отклонения мощности фактически установленного компенсирующего устройства от мощности компенсирующего устройства, заданной энергоснабжающей организацией.

b – плата за 1 кВт∙ч потребленной энергии, руб. (тарифная стоимость 1 кВт-ч потребляемой электроэнергии, руб.). Для одноставочного и двухставочного тарифов определяется договорными условиями (в данном случае принято в = 0,70 руб./кВт∙ч);

WM – активная энергия предприятия, потребляемая осветительной и силовой нагрузкой, кВт∙ч за месяц (по счетчику):

кВт∙ч,

где ????Wобщ – Суммарная активная энергия, потребляемая предприятием за год, кВт∙ч;

????W0 – активная энергия, потребляемая осветительной нагрузкой в течение года, кВт∙ч;

????Wa – активная мощность предприятия, потребляемая силовой нагрузкой в течение года, кВт∙ч.

6.6. Определение технико-экономических показателей производства


Для оценки эффективности использования электроэнергии на предприятии определяется фактическая стоимость 1 кВт∙ч и удельный расход электроэнергии, то есть расход электроэнергии на единицу продукции.

1. Фактическая стоимость 1 кВт-ч определяется по формуле:


руб./кВт∙ч.

2. Расход электрической энергии на один м выпускаемой продукции определяется по формуле:

кВт∙ч/т.

где Qг – годовая производительность предприятия, т.

7. Режим работы производства, эффективный фонд времени работы оборудования и система планово-предупредительного ремонта


Режим работы предприятия характеризуется прерывной или непрерывной рабочей неделей, числом смен в сутки и продолжительностью рабочей смены. Цеха приготовления пресс-порошка, прессования, сушки и обжига работают в непрерывном режиме (3 смены по 8 часов). Номинальный фонд времени ТН составляет:

дней.

Для ремонтно-механического цеха, лаборатории и КИП режим работы:

дней,

где ТЭФ – эффективный фонд рабочего времени;

104 – количество выходных дней;

14 – количество праздничных дней.

Для склада сырья, готовой продукции, участка загрузки, сортировки и упаковки действует прерывная рабочая неделя (2 смены по 8 часов 7 дней в неделю):

дней.

В проекте необходимо привести данные о принятой системе ППР только по ведущему технологическому агрегату. На проектируемом предприятии им является роликовая печь. Эффективный фонд времени для участка обжига составит:

дней.

где Трем время остановок оборудования на ремонты в рабочее время (для участка обжига Трем составляет 10 дней по 6 циклов, итого 60 дней);

То – время технологически неизбежных остановок в соответствии с установленной системой ППР: То = 30/5 = 6 дней (производство останавливается на капитальный ремонт каждые 5 лет на 30 дней).

Таблица 7.1.

Система ППР

Наименование оборудования

Сменность работы оборудования

Продолжительность

Ремонтного цикла, год

Периода между текущими ремонтами, дней

Структура ремонтного цикла

Роликовая печь

3

5

45-50

т(29)-к