Файл: Онтогенез при половом размножении.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.03.2024

Просмотров: 79

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


2) путем изменения активности мРНК в ее трансляции рибосомами (уровень трансляции);

3) путем деградации мРНК посредством ее тотального или избирательного расщепления рибонуклеазами.

регуляции биосинтеза белка на уровне трансляции во всех случаях она осуществляется через регуляцию инициации трансляции (механизмы инициации трансляции). Это означает, что регуляторные механизмы трансляции направлены на то, чтобы разрешить или не разрешить инициацию трансляции данной мРНК, и если разрешить, то с какой эффективностью (скоростью инициации).

Существуют три основных способа, как регулировать трансляцию. Первый способ - позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам инициации (дискриминация мРНК). Второй способ - негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия). Этими двумя способами регулируются индивидуальные мРНК, то есть трансляция каждой мРНК может специфически контролироваться независимо от других мРНК клетки. Третий способ - тотальная регуляция трансляции всей совокупности мРНК клетки посредством модификации факторов

11. Этапы развития многоклеточного организма (необходимые условия развития): пролиферация, детерминация, дифференцировка клеток, морфогенез, апоптоз

Пролиферация – разрастание ткани организма путём размножения клеток делением. Интенсивность пролиферации регулируется стимуляторами и ингибиторами, которые могут вырабатываться и вдали от реагирующих клеток (например, гормонами), и внутри них.

Пролиферация — разрастание ткани организма путём размножения клеток делением.

Детерминация — это процесс определения дальнейшего пути развития клеток. В эмбриологии — возникновение качественного своеобразия частей организма на ранних стадиях его развития и определяющее путь дальнейшего развития частей зародыша. Детерминация - ограничение, определение – прогрессивное ограничение онтогенетических возможностей эмбриональных клеток. Это означает, что на этапе детерминации клетки по своим морфологическим признакам отличаются от эмбриональных клеток, но функции выполняют еще клеток эмбриональных. Т.е. детерминированные клетки еще не способны выполнять специальные функции. У млекопитающих детерминированные клетки появляются на стадии восьми бластомеров.


Дифференцировка клеток — процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов. Детерминированные клетки постепенно вступают на путь развития (неспециализированные эмбриональные клетки превращаются в дифференцированные клетки организма). Дифференцированные клетки в отличие от детерминированных обладают специальными морфологическими и функциональными организациями. В них происходят строго определенные биохимические реакции и синтез специальных белков.

В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, моноцит развивается в макрофаг, промиобласт развивается в миобласт. Дифференцировка клеток происходит не только в эмбриональном развитии, но и во взрослом организме (при кроветворении, сперматогенезе, регенерации поврежденных тканей).

Морфогене́з — возникновение и развитие органов, систем и частей тела организмов как в индивидуальном (онтогенез), возникновения новых структур и изменения их формы в ходе индивидуального развития организмов. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состояние и по большей части необратимым.Процесс морфогенеза контролирует организованное пространственное распределение клеток во время эмбрионального развития организма. Морфогенез может проходить также и в зрелом организме, в клеточных культурах или опухолях. Образование формы, принятие новой формы. Образование формы чаще всего происходит в результате дифференциального роста. В основе морфогенеза лежит организованное движение клеток и групп клеток. В результате перемещения клетки попадают в новую среду. Процесс происходит во времени и пространстве.

Дифференцированные клетки не могут существовать самостоятельно, кооперируются с другими клетками, образуя ткани и органы. В образовании органов важно поведение клеток, которое зависит от клеточных мембран.


Апоптоз  — программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро фагоцитируются (захватываются и перевариваются) макрофагами либо соседними клетками, минуя развитие воспалительной реакции
основных функций апоптоза, сводящихся к удалению дефектных клеток и участию в процессах дифференцировки и морфогенеза.
12. Взаимодействие частей развивающегося организма. Эмбриональная индукция. Опыт Шпемана

Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.

Эмбриональная индукция — взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых.

Важную роль в эмбриогенезе играют контактные и дистантные взаимодействия.

Контактные взаимодействия – контакт как минимум 2-х бластомеров, являются условием для нормального развития зародыша. Обуславливают дальнейшую судьбу бластомеров, определяя направление перемещения клеточных слоёв, миграцию, подавление деления и т.д. (Сосед определяет судьбу рядом лежащих бластомеров).

Дистантные взаимодействия: в процессах эмбриональной индукции. Взаимодействие частей зародыша, при котором 1 участок определяет судьбу другого, побуждая его к делению. Явление эмбриональной индукции – опыты Грегора Шпемана на амфибиях (1924 г.).

Г. Шпеман и его сотрудница Х. Мангольд открыли у зародышей амфибий «организатор». Контрольный эксперимент был проведен Хильдой Мангольд в 1921 году. Она вырезала кусочек ткани из дорсальной губы бластопора гаструлы гребенчатого тритона со слабопигментированным зародышем, и пересадила ее в вентральную область другой гаструлы близкого вида, тритона обыкновенного, зародыш которого характеризуется обильной пигментацией. Эта естественная разница в пигментации позволила различить в химерном зародыше ткани донора и реципиента. Клетки дорсальной губы при нормальном развитии образуют хорду и мезодермальные сомиты (миотомы). После пересадки у гаструлы-реципиента из тканей трансплантата развивалась вторая хорда и миотомы. Над ними из эктодермы реципиента возникала новая дополнительная нервная трубка. В итоге это привело к образованию осевого комплекса органов второго головастика на том же зародыше.


Вывод: Дорзальная губа бластопора гаструлы у амфибии в норме индуцирует закладку нервной трубки (в норме на спинной/дорзальной стороне).

Межклеточные взаимодействия чрезвычайно важны в развитии и являются одним из механизмов, обеспечивающих интегрированность развития особи. Этот механизм действует на протяжении всего онтогенеза, но особую значимость имеет на ранних этапах эмбриогенеза, а именно, в период дробления. Так, уже на 2-клеточной стадии зародыш представляет собой не совокупность отдельных клеток, а единый организм. Это может быть показано с привлечением результатов ряда экспериментов. Немецкий эмбриолог Вильгельм Ру разрушал одну из клеток зародыша лягушки на стадии 2 бластомеров раскаленной иглой. В ходе дальнейшего развития из оставшегося неповрежденными бластомера формировалась только половина зародыша - полунейрула с полным набором структур правой или левой стороны. Однако, как известно, на стадии дробления клетки большинства хордовых тотипотентны. И действительно, если повторить описанный эксперимент и сразу отделить убитый бластомер от неповрежденного, то из последнего сформируется абсолютно полноценный организм. Аномальное развитие зародыша в опыте В. Ру наблюдалось вследствие контакта бластомеров. Неповрежденный бластомер, благодаря наличию межклеточных влияний, «определял» себя только как часть целого организма и развивался в соответствии с полученной информацией. При отделении этого бластомера сигналов к нему от погибшей клетки не поступало, и он давал начало полноценной особи. Таким образом, уже начиная со стадии 2 бластомеров, каждый из них развивается как часть единого организма в соответствии с сигналами, полученными от своего окружения.

Вывод: Дорзальная губа бластопора гаструлы у амфибии в норме индуцирует закладку нервной трубки (в норме на спинной/дорзальной стороне).

Для осуществления эмбриональной индукции необходимо:

· наличие индуктора;

· наличие индуцируемой структуры, отвечающей на действие индуктора;

· наличие состояния компетентности (способности воспринимать этот стимул).

Виды эмбриональной индукции:

· первичная: обнаруживается первой, при закладке нервной трубки;

· вторичная: проявляется на более поздней стадии, чем гаструляция, при закладке всех структур зародыша.;

· последующая: при закладке глазного яблока, почек; каждая новая структура последовательно играет роль индуктора;


· взаимная: при закладке конечностей.
13. Целостность онтогенеза. Эмбриональная регуляция в разные периоды онтогенеза
Индивидуальное развитие организма есть целостный процесс, и будущее состояние каждого развивающегося элемента есть функция его положения в целом. Основные положения закона следующие.
Целостность организма – его внутреннее единство, относительная автономность, несводимость его свойств к свойствам отдельных его частей, подчиненность частей целому – проявляется в течение всех стадий онтогенеза. Таким образом, онтогенез представляет собой упорядоченное единство последовательно чередующихся состояний целостности. В целостности индивидуального развития проявляется органическая целесообразность.
Целостность онтогенеза базируется на действии системно-регуляторных факторов: цитогенетических, морфогенетических, гормональных, морфофизиологических, нейрогуморальных. Эти факторы, действуя по принципу обратной связи, координируют ход развития и жизнедеятельность организма как активного целого в тесной связи с условиями окружающей среды.
Свойство целостности имеет количественное выражение, неодинаковое для представителей разных видов, для разных особей, стадий и состояний организма. У растений целостность, как правило, выражена в меньшей степени, чем у животных. В процессе регенерации, т.е. восстановления утраченных частей или восстановления организма из части, целостность возрастает. Усложнение организации в процессе онтогенеза и филогенеза, усиление координирующей функции системно-регуляторных факторов организма означают возрастание целостности.

Филогенетические изменения суть изменения целостных онтогенезов, протекающие в условиях воздействия естественного отбора на системно-регуляторные факторы. Поэтому свойство целостности сохраняется организмами не только в их индивидуальном, но и историческом развитии. Изменения, разрушающие целостность, отметаются отбором.

Таким образом, индивидуальное развитие всех организмов носит стадийный характер. У растений и особенно животных четко разграничены стадии: эмбриональнаямолодостизрелости и старости. Возможно и более дробное подразделение онтогенеза.