Файл: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования донской государственный технический университет.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.04.2024

Просмотров: 16

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

В таблице h-функций находим соответствующую каждому    функцию   . Искомую составляющую    получаем из этой функции путём умножения ординат    на величину   . Время    получаем как частное от деления величины    на   .   ;   .

Таблица 1.4.3 — Значения для построения переходного процесса.

 

t табл,

h табл,

t

h1(t)

t табл,

h табл,

t

h2(t)

t табл,

h табл,

t

h2(t)

0

0,0000

0,0000

0,0000

0

0,0000

0,0000

0,0000

0

0,0000

0,0000

0,0000

0,5

0,1760

0,0200

1,1733

0,5

0,2400

0,0100

-0,2704

0,5

0,2400

0,0050

-0,1296

1

0,3400

0,0400

2,2667

1

0,4610

0,0200

-0,5194

1

0,4610

0,0100

-0,2489

1,5

0,4940

0,0600

3,2933

1,5

0,6650

0,0300

-0,7492

1,5

0,6650

0,0150

-0,3591

2

0,6280

0,0800

4,1867

2

0,8330

0,0400

-0,9385

2

0,8330

0,0200

-0,4498

2,5

0,7390

0,1000

4,9267

2,5

0,9670

0,0500

-1,0895

2,5

0,9670

0,0250

-0,5222

3

0,8280

0,1200

5,5200

3

1,0610

0,0600

-1,1954

3

1,0610

0,0300

-0,5729

3,5

0,8920

0,1400

5,9467

3,5

1,1150

0,0700

-1,2562

3,5

1,1150

0,0350

-0,6021

4

0,9380

0,1600

6,2533

4

1,1420

0,0800

-1,2867

4

1,1420

0,0400

-0,6167

4,5

0,9600

0,1800

6,4000

4,5

1,1380

0,0900

-1,2821

4,5

1,1380

0,0450

-0,6145

5

0,9770

0,2000

6,5133

5

1,1170

0,1000

-1,2585

5

1,1170

0,0500

-0,6032

5,5

0,9860

0,2200

6,5733

5,5

1,0920

0,1100

-1,2303

5,5

1,0920

0,0550

-0,5897

6

0,9820

0,2400

6,5467

6

1,0510

0,1200

-1,1841

6

1,0510

0,0600

-0,5675

6,5

0,9800

0,2600

6,5333

6,5

1,0180

0,1300

-1,1469

6,5

1,0180

0,0650

-0,5497

7

0,9790

0,2800

6,5267

7

0,9930

0,1400

-1,1188

7

0,9930

0,0700

-0,5362

7,5

0,9800

0,3000

6,5333

7,5

0,9740

0,1500

-1,0974

7,5

0,9740

0,0750

-0,5260

8

0,9850

0,3200

6,5667

8

0,9660

0,1600

-1,0884

8

0,9660

0,0800

-0,5216

8,5

0,9890

0,3400

6,5933

8,5

0,9660

0,1700

-1,0884

8,5

0,9660

0,0850

-0,5216

9

0,9970

0,3600

6,6467

9

0,9700

0,1800

-1,0929

9

0,9700

0,0900

-0,5238

9,5

1,0040

0,3800

6,6933

9,5

0,9750

0,1900

-1,0985

9,5

0,9750

0,0950

-0,5265

10

1,0090

0,4000

6,7267

10

0,9820

0,2000

-1,1064

10

0,9820

0,1000

-0,5303

10,5

1,0130

0,4200

6,7533

10,5

0,9870

0,2100

-1,1120

10,5

0,9870

0,1050

-0,5330

11

1,0150

0,4400

6,7667

11

0,9970

0,2200

-1,1233

11

0,9970

0,1100

-0,5384

11,5

1,0160

0,4600

6,7733

11,5

0,9970

0,2300

-1,1233

11,5

0,9970

0,1150

-0,5384

12

1,0150

0,4800

6,7667

12

0,9970

0,2400

-1,1233

12

0,9970

0,1200

-0,5384

12,5

1,0130

0,5000

6,7533

12,5

0,9970

0,2500

-1,1233

12,5

0,9970

0,1250

-0,5384

13

1,0120

0,5200

6,7467

13

0,9970

0,2600

-1,1233

13

0,9970

0,1300

-0,5384

13,5

1,0110

0,5400

6,7400

13,5

0,9980

0,2700

-1,1244

13,5

0,9980

0,1350

-0,5389

14

1,0110

0,5600

6,7400

14

1,0000

0,2800

-1,1267

14

1,0000

0,1400

-0,5400

14,5

1,0120

0,5800

6,7467

14,5

1,0020

0,2900

-1,1289

14,5

1,0020

0,1450

-0,5411

15

1,0120

0,6000

6,7467

15

1,0050

0,3000

-1,1323

15

1,0050

0,1500

-0,5427

15,5

1,0140

0,6200

6,7600

15,5

1,0080

0,3100

-1,1357

15,5

1,0080

0,1550

-0,5443

16

1,0150

0,6400

6,7667

16

1,0110

0,3200

-1,1391

16

1,0110

0,1600

-0,5459

16,5

1,0160

0,6600

6,7733

16,5

1,0110

0,3300

-1,1391

16,5

1,0110

0,1650

-0,5459

17

1,0160

0,6800

6,7733

17

1,0120

0,3400

-1,1402

17

1,0120

0,1700

-0,5465

17,5

1,0150

0,7000

6,7667

17,5

1,0090

0,3500

-1,1368

17,5

1,0090

0,1750

-0,5449

18

1,0150

0,7200

6,7667

18

1,0080

0,3600

-1,1357

18

1,0080

0,1800

-0,5443

18,5

1,0150

0,7400

6,7667

18,5

1,0060

0,3700

-1,1334

18,5

1,0060

0,1850

-0,5432

19

1,0150

0,7600

6,7667

19

1,0010

0,3800

-1,1278

19

1,0010

0,1900

-0,5405

19,5

1,0140

0,7800

6,7600

19,5

0,9980

0,3900

-1,1244

19,5

0,9980

0,1950

-0,5389

20

1,0130

0,8000

6,7533

20

0,9960

0,4000

-1,1222

20

0,9960

0,2000

-0,5378

20,5

1,0120

0,8200

6,7467

20,5

0,9950

0,4100

-1,1210

20,5

0,9950

0,2050

-0,5373

21

1,0110

0,8400

6,7400

21

0,9950

0,4200

-1,1210

21

0,9950

0,2100

-0,5373

21,5

1,0110

0,8600

6,7400

21,5

0,9960

0,4300

-1,1222

21,5

0,9960

0,2150

-0,5378

22

1,0110

0,8800

6,7400

22

0,9960

0,4400

-1,1222

22

0,9960

0,2200

-0,5378

22,5

1,0110

0,9000

6,7400

22,5

0,9970

0,4500

-1,1233

22,5

0,9970

0,2250

-0,5384

23

1,0110

0,9200

6,7400

23

0,9980

0,4600

-1,1244

23

0,9980

0,2300

-0,5389

23,5

1,0100

0,9400

6,7333

23,5

0,9990

0,4700

-1,1255

23,5

0,9990

0,2350

-0,5395

24

1,0100

0,9600

6,7333

24

1,0000

0,4800

-1,1267

24

1,0000

0,2400

-0,5400

24,5

1,0090

0,9800

6,7267

24,5

1,0000

0,4900

-1,1267

24,5

1,0000

0,2450

-0,5400

25

1,0080

1,0000

6,7200

25

1,0000

0,5000

-1,1267

25

1,0000

0,2500

-0,5400

25,5

1,0080

1,0200

6,7200

25,5

1,0000

0,5100

-1,1267

25,5

1,0000

0,2550

-0,5400

26

1,0070

1,0400

6,7133

26

1,0000

0,5200

-1,1267

26

1,0000

0,2600

-0,5400


При помощи функции линейной интерполяции linterp, встроенной в математический пакет MathCAD, находим функции переходных характеристик, соответствующих каждой из трапеций, и производим их сложение.


Рисунок 1.4.4 — Графики переходных процессов замкнутой САУ:

h1(t) — переходная характеристика первой трапеции;

h2(t) — переходная характеристика второй трапеции;

h3(t) — переходная характеристика третьей трапеции;

H(t) — суммарная переходная характеристика.


Определение параметров и построение желаемой ЛАЧХ

Параметры для построения исходной ЛАЧХ.

 



 

T1 = 0.02с

T2 = 0.04с

T3 = 0.12с

ω1 = 50 с-1

ω2 = 25 с-1

ω3 = 8.333 с-1

20·log K = 20·log 1 = 0 дБ

Переходный процесс должен удовлетворять следующим показателям качества:

 ≤0,15с,   ≤30%.



Рисунок 1.7.1 Переходный процесс скорректированной САУ

Анализируя переходной процесс системы управления (рисунок 1.7.1), можем сказать, что время регулирования и перерегулирование, не выходит за пределы значений, заданных „коробочкой Солодовникова“. Следовательно, переходный процесс удовлетворяет предъявленным условиям качества регулирования САУ.

1.8 Анализ устойчивости скорректированной САУ

Производится по критерию устойчивости Михайлова.

Передаточная функция разомкнутой скорректированной САУ имеет вид:

 



Передаточная функция замкнутой скорректированной САУ определяется следующим образом:

 





 

Раскроем скобки в знаменателе передаточной функции:



Заменяем переменную s на jω:



Разобьем это выражение на действительную и мнимую составляющие.

 — вещественная часть;

 — мнимая часть.

По этим данным строится годограф Михайлова. Для устойчивости САУ, необходимо и достаточно, чтобы вектор годографа Михайлова последовательно обошёл вокруг начало координат и в 3 квадранте ушёл в бесконечность.

ω ∈ (0 ÷ 300)




Рисунок 1.8.1 — Годограф Михайлова для скорректированной системы

Таблица 1.8.1 — Данные для построения годографа Михайлова

ω

0

10

30

50

60

70

80

100

200

500

Cз(ω)

6.3

6.00

3.52

-1.44

-4.85

-8.88

-13.5

-24.7

-117.7

-768.7

Dз(ω)

0

1.438

4.03

5.75

6.108

6.03

5.46

2.5

-67

-1427

 

Вектор Михайлова обошел вокруг начала координат и в 3 квадранте ушел в бесконечность. Отсюда следует, что скорректированная САУ устойчива.

Исследование нелинейной системы.

Согласно заданию, структурная схема нелинейной САУ выглядит следующим образом:



Рисунок 2.1 – структурная схема нелинейной системы.

 


Рисунок 2.2 – передаточная характеристика нелинейного звена:

с = 2;

b = c/K4 = 2/0.1 = 5.

 

Построение фазового портрета нелинейной САУ

Выполняется вручную методом изоклин при помощи математического пакета MathCAD, в котором производится построение изоклин..

Уравнения изоклин получаем исходя сначала из передаточной функции линейной части системы:




Здесь, N – коэффициент угла наклона фазовой
траектории при прохождении через изоклину;

X – отклонение выходной величины от её заданного значения;

X1(t) – функция, зависящая от свойств нелинейного звена.

X1(t) принимает следующие значения:

    b при X < –c

    –b при X > c

    K4∙X при –c≤X≤c.



Рисунок 2.1.1 — Изоклины фазового портрета.

 

Талица 2.1.1 — Данные для построения изоклин.

C

-100

-50

-37.5

-25

X

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

Y

-137.5

-75

75

137.5

-550

-300

300

550

-2200

-1200

1200

2200

1100

600

-600

-1100

C

-20

-15

-10

-5

X

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

Y

687.5

375

-375

-687.5

500

272.7

-272.7

-500

392.9

214.3

-214.3

-392.9

323.5

176.5

-176.5

-323.5

C

0

5

10

15

X

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

Y

275

150

-150

-275

239.1

130.4

-130.4

-239.1

211.5

115.4

-115.4

-211.5

189.7

103.4

-103.4

-189.7

C

20

25

50

100

X

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

-40

-20

20

40

Y

171.9

93.8

-93.8

-171.9

157.1

85.7

-85.7

-157.1

110

60

-60

-110

68.8

37.5

-37.5

-68.8