Файл: Добавить в избранное.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.04.2024

Просмотров: 46

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Рис. 1. При­мер по­сле­до­ва­тель­но­го со­еди­не­ния

Ос­нов­ная за­да­ча – это по­нять, как свя­за­ны па­ра­мет­ры каж­до­го ре­зи­сто­ра в со­еди­не­нии с па­ра­мет­ра­ми эк­ви­ва­лент­но­го ре­зи­сто­ра (как будто весь блок по­сле­до­ва­тель­ных ре­зи­сто­ров   мы за­ме­ни­ли одним ре­зи­сто­ром  )

В первую оче­редь такое со­еди­не­ние не дает ни­ка­кой воз­мож­но­сти за­ря­дам в раз­ном ко­ли­че­стве про­хо­дить через раз­ные ре­зи­сто­ры в цепи, по­это­му:   

На­пря­же­ние же, на­про­тив, будет раз­ным. Так как ра­бо­та элек­три­че­ско­го поля по пе­ре­но­су за­ря­да через весь блок – это сумма работ по пе­ре­но­су за­ря­да через каж­дый ре­зи­стор:



Вос­поль­зо­вав­шись за­ко­ном Ома в по­след­нем ра­вен­стве: 

мы по­лу­чим вы­ра­же­ние для со­про­тив­ле­ний:

Глав­ная про­бле­ма по­сле­до­ва­тель­но­го со­еди­не­ния – это то, что в слу­чае раз­ры­ва цепи в ка­ком-то одном месте ток пе­ре­ста­ет идти во всей цепи. Ярким при­ме­ром по­сле­до­ва­тель­но­го со­еди­не­ния яв­ля­ют­ся гир­лян­ды

Па­рал­лель­ным на­зы­ва­ет­ся со­еди­не­ние, при ко­то­ром концы всех ре­зи­сто­ров имеют общую точку – «узел» (рис. 2):

Рис. 2. Па­рал­лель­ное со­про­тив­ле­ние

В дан­ном со­еди­не­нии эк­ви­ва­лент­ные на­пря­же­ние, сила тока и со­про­тив­ле­ния ищут­ся по-дру­го­му.

Во-пер­вых, так как концы всего блока сов­па­да­ют с кон­ца­ми каж­до­го ре­зи­сто­ра, все на­пря­же­ния равны между собой и равны эк­ви­ва­лент­но­му:     

Заряд же, про­шед­ший за еди­ни­цу вре­ме­ни через весь блок
, равен сумме за­ря­дов, про­шед­ших через каж­дый от­дель­ный ре­зи­стор в со­еди­не­нии. По­это­му:       

Те­перь, под­ста­вив в по­след­нее ра­вен­ство закон Ома:           

мы по­лу­чим вы­ра­же­ние для эк­ви­ва­лент­но­го со­про­тив­ле­ния:         

Стоит от­ме­тить, что в боль­шин­стве цепей при­ме­ня­ют­ся сме­шан­ные со­еди­не­ния.

 

24.2 Состав ядра атома.

Ядро атома любого химического элемента состоит из положительно заряженных протонов (р) и не имеющих заряда нейтронов (n).

Протоны и нейтроны являются двумя зарядовыми состояниями частицы, называемой нуклон.

Количество протонов и нейтронов можно определить по таблице Менделеева.

Порядковый номер – это количество протонов. Чтобы узнать количество нейтронов, нужно из атомной массы вычесть количество протонов.

Например,  в ядре атома кислорода 8 протонов и 8 нейтронов.

 

25.1Электродвижущая сила. Закон Ома для полной цепи.

Полная электрическая цепь обязательно содержит источник тока.

Внутри источника тока происходит разделение зарядов: на одном полюсе накапливается положительный заряд, на другом – отрицательный.

Силы, совершающие работу по разделению зарядов, называются сторонние.

Электродвижущей силой источника (ЭДС) называется величина равная отношению работы сторонних сил Аст по перемещению заряда вдоль замкнутой цепи к величине этого заряда q.  

ЭДС обозначается буквой  ; измеряется в Вольтах.

Закон Ома для полной цепи:          Сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме внешнего и внутреннего сопротивлений цепи.     
 

I – сила тока (А),         

 

 

 

25.2 Состав ядра атома. Радиоактивность. Виды радиоактивных излучений и их свойства.

Ядро атома любого химического элемента состоит из положительно заряженных протонов (р) и не имеющих заряда нейтронов (n).

Протоны и нейтроны являются двумя зарядовыми состояниями частицы, называемой нуклон.

Количество протонов и нейтронов можно определить по таблице Менделеева.

Порядковый номер – это количество протонов. Чтобы узнать количество нейтронов, нужно из атомной массы вычесть количество протонов.

Например,  в ядре атома кислорода 8 протонов и 8 нейтронов.

Радиоактивность – это способность атомов одних химических элементов самопроизвольно (спонтанно) превращаться в атомы других химических элементов. При этом излучаются α-, β- и γ-лучи и выделяется энергия.

Явление радиоактивности было открыто опытным путём французским учёным Беккерелем в 1896 г. Он заметил, что соли урана засвечивают завёрнутую во много слоёв фотобумагу невидимым проникающим излучением.

В дальнейшем радиоактивность изучали Мария и Пьер Кюри и Резерфорд.

Было открыто три составляющих радиоактивного излучения: α-, β- и γ-лучи.

α-лучи – это поток ядер атомов гелия – тяжелые положительно заряженные частицы. Они слабо отклоняются электрическими и магнитными полями и обладают наименьшей проникающей способностью (слой бумаги толщиной около 0,1 мм для них уже непрозрачен).

β-лучи – это поток электронов (лёгкие, отрицательно заряженные), движущимися со скоростями, близкими к скорости света. Они сильно отклоняются электрическими и магнитными полями и гораздо меньше поглощаются веществом (их задерживает алюминиевая пластинка толщиной в несколько миллиметров).

γ-лучи – этоэлектромагнитные волны с очень большой частотой (более 1020 Гц). Их скорость около 300 000 км/с. Они не отклоняются электрическими и магнитными полями и обладают самой большой проникающей способностью. Интенсивность поглощения γ-лучи увеличивается с увеличением атомного номера вещества-поглотителя. При прохождении γ-лучей через слой свинца толщиной в 1 см их интенсивность убывает лишь вдвое.


γ-лучи представляют для человека наибольшую опасность.

 

 

 

 

 

 

 

 

26.1 Тепловое действие тока. Закон Джоуля – Ленца. Мощность электрического тока.

При про­хож­де­нии тока через про­вод­ник, про­вод­ник на­гре­ва­ет­ся. По­че­му это про­ис­хо­дит? Мы уже за­тра­ги­ва­ли мо­ле­ку­ляр­ное стро­е­ние про­вод­ни­ков в теме о со­про­тив­ле­нии и от­ме­ча­ли, что при про­те­ка­нии тока сво­бод­ные элек­тро­ны стал­ки­ва­ют­ся с уз­ла­ми кри­стал­ли­че­ской ре­шет­ки. При этих столк­но­ве­ни­ях элек­тро­ны по­сто­ян­но при­да­ют неко­то­рую ско­рость узлам ре­шет­ки (рис. 1).

Рис. 1. Вза­и­мо­дей­ствие элек­тро­нов с уз­ла­ми кри­стал­ли­че­ской ре­шет­ки

Так как тем­пе­ра­ту­ра – мера теп­ло­во­го дви­же­ния, в про­цес­се «рас­тал­ки­ва­ния» тем­пе­ра­ту­ра про­вод­ни­ка по­вы­ша­ет­ся. В ка­кой-то мо­мент на­сту­па­ет рав­но­ве­сие, когда ко­ли­че­ство энер­гии, по­лу­ча­е­мое про­вод­ни­ком вслед­ствие про­хож­де­ния тока, равно ко­ли­че­ству энер­гии, ко­то­рое он от­да­ет в окру­жа­ю­щую среду.

В том слу­чае, когда ра­бо­та тока не пре­об­ра­зу­ет­ся в ме­ха­ни­че­скую или же ток не имеет хи­ми­че­ско­го дей­ствия, ра­бо­та тока эк­ви­ва­лент­на ко­ли­че­ству теп­ло­ты, вы­сво­бож­да­ю­ще­го­ся в окру­жа­ю­щую среду.

Фор­му­лу про­сче­та этого ко­ли­че­ства теп­ло­ты впер­вые неза­ви­си­мо друг от друга от­кры­ли двое уче­ных: рус­ский Эмиль Ленц и ан­гли­ча­нин Джеймс Джо­уль.

Закон Джо­у­ля-Лен­ца:        

Как видно, пра­вая часть фор­му­лы в точ­но­сти по­вто­ря­ет одну из форм фор­му­лы для ра­бо­ты элек­три­че­ско­го тока.

Все­гда сле­ду­ет пом­нить, что в слу­чае, когда есть ка­кое-ли­бо дру­гое пре­об­ра­зо­ва­ние энер­гии тока, фор­му­ла Джо­у­ля-Лен­ца не вы­пол­ня­ет­ся.

 На­ря­ду с ра­бо­той тока очень важно от­ме­тить мощ­ность тока, так как эта ха­рак­те­ри­сти­ка яв­ля­ет­ся клю­че­вой в бы­то­вом ис­поль­зо­ва­нии элек­тро­энер­гии (на всех бы­то­вых при­бо­рах ука­за­но при­ем­ле­мое на­пря­же­ние его мощ­ность).

Опре­де­ле­ниеМощ­ность 
– это ра­бо­та, вы­пол­нен­ная за еди­ни­цу вре­ме­ни (ско­рость вы­пол­не­ния током ра­бо­ты):                     

Еди­ни­ца из­ме­ре­ния мощ­но­сти – ватт:                

И те­перь, ис­поль­зуя наши зна­ния о ра­бо­те тока, мы без труда най­дем фор­му­лу для мощ­но­сти тока:                                     

Или же, если ис­поль­зо­вать дру­гие виды фор­му­лы для ра­бо­ты:   ,        

 

 

26.2Цепная реакция деления ядер урана и условия её протекания. Термоядерная реакция.

Ядерными реакциями называют изменения атомных ядер, вызванные их взаимодействием с элементарными частицами или друг с другом.

В 1938 г. немецкие физики Ган и Штрасман открыли деление урана под действием нейтронов: ядро урана делится на два близких по массе ядра.

У этой реакции есть две важные особенности, которые сделали возможным её практическое применение:

1. При делении каждого ядра урана выделяется значительная энергия.

2. Деление каждого ядра сопровождается вылетом 2-3 нейтронов, которые могут вызвать деление следующих ядер, т.е. сделать реакцию цепной.

Для осуществления цепной реакции используют ядра изотопа урана с массовым числом 235, т.е.  .   Именно они хорошо делятся под действием как быстрых, так и медленных нейтронов.

Ядра изотопа урана с массовым числом 238 ( ) используют для получения плутония, который также используют для цепной ядерной реакции.

26.2(продолжение)

Для осуществления цепной реакции необходимо, чтобы среднее число освобождённых в данной массе нейтронов не уменьшалось с течением времени. Управляемую цепную реакцию проводят в ядерных реакторах, которые конструируют так, чтобы коэффициент размножения