ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.10.2024
Просмотров: 16
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Проверим необходимое и достаточное условие разрешимости задачи.
∑a = 400 + 550 + 300 = 1250
∑b = 450 + 250 + 200 + 350 = 1250
Условие баланса соблюдается. Запасы равны потребностям. Следовательно, модель транспортной задачи является закрытой.
Занесем исходные данные в распределительную таблицу.
| B1 | B2 | B3 | B4 | Запасы |
A1 | 7 | 4 | 9 | 3 | 400 |
A2 | 2 | 11 | 8 | 4 | 550 |
A3 | 3 | 8 | 6 | 5 | 300 |
Потребности | 450 | 250 | 200 | 350 | |
Этап I. Поиск первого опорного плана.
1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую, и в клетку, которая ей соответствует, помещают меньшее из чисел ai, или bj.
Затем, из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы
, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя.
Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
Искомый элемент равен c21=2. Для этого элемента запасы равны 550, потребности 450. Поскольку минимальным является 450, то вычитаем его.
x21 = min(550,450) = 450.
x | 4 | 9 | 3 | 400 |
2 | 11 | 8 | 4 | 550 - 450 = 100 |
x | 8 | 6 | 5 | 300 |
450 - 450 = 0 | 250 | 200 | 350 | |
Искомый элемент равен c14=3. Для этого элемента запасы равны 400, потребности 350. Поскольку минимальным является 350, то вычитаем его.
x14 = min(400,350) = 350.
x | 4 | 9 | 3 | 400 - 350 = 50 |
2 | 11 | 8 | x | 100 |
x | 8 | 6 | x | 300 |
0 | 250 | 200 | 350 - 350 = 0 | |
Искомый элемент равен c12=4. Для этого элемента запасы равны 50, потребности 250. Поскольку минимальным является 50, то вычитаем его.
x12 = min(50,250) = 50.
x | 4 | x | 3 | 50 - 50 = 0 |
2 | 11 | 8 | x | 100 |
x | 8 | 6 | x | 300 |
0 | 250 - 50 = 200 | 200 | 0 | |
Искомый элемент равен c33=6. Для этого элемента запасы равны 300, потребности 200. Поскольку минимальным является 200, то вычитаем его.
x33 = min(300,200) = 200.
x | 4 | x | 3 | 0 |
2 | 11 | x | x | 100 |
x | 8 | 6 | x | 300 - 200 = 100 |
0 | 200 | 200 - 200 = 0 | 0 | |
Искомый элемент равен c32=8. Для этого элемента запасы равны 100, потребности 200. Поскольку минимальным является 100, то вычитаем его.
x32 = min(100,200) = 100.
x | 4 | x | 3 | 0 |
2 | 11 | x | x | 100 |
x | 8 | 6 | x | 100 - 100 = 0 |
0 | 200 - 100 = 100 | 0 | 0 | |
Искомый элемент равен c22=11. Для этого элемента запасы равны 100, потребности 100. Поскольку минимальным является 100, то вычитаем его.
x22 = min(100,100) = 100.
x | 4 | x | 3 | 0 |
2 | 11 | x | x | 100 - 100 = 0 |
x | 8 | 6 | x | 0 |
0 | 100 - 100 = 0 | 0 | 0 | |
| B1 | B2 | B3 | B4 | Запасы |
A1 | 7 | 4[50] | 9 | 3[350] | 400 |
A2 | 2[450] | 11[100] | 8 | 4 | 550 |
A3 | 3 | 8[100] | 6[200] | 5 | 300 |
Потребности | 450 | 250 | 200 | 350 | |
В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.
2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6. Следовательно, опорный план является