awareness in patients and normal subjects implicate certain patterns of coactivation across cortical networks as the principal correlates of awareness, including coactivation of prefrontal and parietal cortices along with the occipitaltemporal cortex.126 Although the activation patterns identified in the MCS patient shown in Figure 9–10 include several of these specific regions, the patient is unable to communicate reliably to indicate whether visual or selfreflective awareness is present. The coactivation of prefrontal, parietal, and occipital regions suggests awareness but is potentially consistentwithotherinterpretations.Similarconcerns arise in the interpretation of the Owen120 findings shown in Figure 9–9.
In the future, functional brain imaging techniques in combination with electrodiagnostics may identify patients with rehabilitative potential, and conversely, those in whom further recovery is not expected. The introduction of the MCS nosologic category is aimed at directing efforts to identify patients who may have some substrate for further recovery despite very limited behavioral evidence of awareness. On the other hand, fragmentary cortical networks may remain in VS patients without heralding further recovery or signifying awareness. The ‘‘gray zone’’ between VS and the lower functional boundary of MCS in Figure 9–1 reflects a probable overlap region where patients may acquire a reliable sensory-motor loop response of very limited cerebral systems that, despite contingency with environmental stimuli, may not reflect awareness or potential for further recovery. It is critical, then, to identify residual capacity as opposed to isolated functional activity in the cortex. This will require prospective studies of large numbers of patients with early VS, to determine if there are indices on functional imaging that can predict eventual improvement.
POTENTIAL MECHANISMS UNDERLYING RESIDUAL FUNCTIONAL CAPACITY IN SEVERELY DISABLED PATIENTS
The neuroimaging studies reviewed above raise the question of what mechanisms might limit further recovery in MCS patients who harbor widely connected and responsive cere-
bral networks. Fluctuations of cognitive function in MCS patients91,127(and occasional late
spontaneous emergence from MCS [see below]) demonstrate an underlying residual cognitive capacity in some severely injured brains. At present, no studies have addressed this question by systematically correlating brain structural integrity, cerebral metabolism, and electrophysiology across a large sample of patients with severe disability. Nonetheless, several careful observations of variations in structural injury patterns, patterns of normal resting metabolic activity, and abnormal brain dynamics provide potentially important clues and directions for future research.
Variations of Structural Substrates
Underlying Severe Disability
Clinical observations and quantitative measurements of neuronal loss following complex brain injuries do not support an invariably straightforward relationship of recovery of cognitive function that is simply graded by the degree of vascular, diffuse axonal, and direct ischemic brain damage. Although indirectly measured volumetric indices do offer some prediction of long-term outcome in PVS following overwhelming traumatic71 or anoxic brain injury,38 pathologic studies comparing patients remaining severely disabled following brain injuries to those remaining in VS demonstrate that severely disabled and some MCS patients may have only focal brain damage, whereas PVS patients suffer diffuse axonal injury.128 Severely disabled patients with diffuse axonal injury appeared to have lesser quantitative damage than PVS patients. These findings suggest that significant variations in underlying mechanisms of cognitive disabilities and residual brain function accompany MCS and other severe but less disabling brain injuries.
It is also well known that enduring global disorders of consciousness can arise in the setting of only focal injuries.129 These injuries are typically concentrated in the rostral teg-
mental mesencephalon and paramedian thalamus.112,130 Patients with moderate, diffuse
axonal injury combined with limited focal damage to these paramedian structures have not been systematically studied, but this pathology