Файл: 1. Произведение растворимости. Условие образования и растворения осадка.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.02.2024

Просмотров: 13

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Причина успеха хроматографического метода обусловлена возможностью разделения с его помощью сложных смесей, анализ которых обычными методами затруднителен, например, смесей углеводородов, аминокислот, ионов редкоземельных элементов.

Сущность метода.

Газовая хроматография (ГХ) — процесс разделения компонентов смеси, основанный на различии в равновесном распределении компонентов между двумя фазами —подвижной и неподвижной. Неподвижной фазой обычно служит твердое вещество (его часто называют сорбентом) или пленка жидкости, нанесенная на твердое вещество. Неподвижную фазу обычно помещают в стеклянную (или металлическую) трубку, называемую колонкой. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу.

Сущность метода ГХ состоит в следующем. Анализируемая смесь (обычно — раствор) летучих компонентов переводится в парообразное состояние и смешивается с потоком инертного газа-носителя, образуя с ним подвижную фазу — ПФ. Эта смесь проталкивается далее новой порцией непрерывно подаваемого газа-носителя и попадает в хроматографическую колонку, заполненную неподвижной (стационарной) твердой или жидкой фазой — НФ. Разделяемые компоненты распределяются между ПФ и НФ в соответствии с их коэффициентами распределения К, определяемыми формулой:

K=

где с(НФ)и с(ПФ) — соответственно содержание (в г/мл) данного компонента в неподвижной и подвижной фазах, находящихся в динамическом равновесии. Равновесный обмен хроматографируемого вещества между НФ и ПФ осуществляется в результате многократного повторения актов сорбция-десорбция по мере движения ПФ вдоль НФ внутри хроматографической колонки.

Поток газа-носителя увлекает с собой разделяемую парообразную смесь вдоль хроматографической колонки, так что процессы сорбция-десорбция разделяемых компонентов повторяется многократно, причем каждый раз в системе устанавливается динамическое равновесие разделяемых веществ между ПФ и НФ. Эти многократные переходы разделяемых веществ из ПФ в НФ и обратно совершаются по всей длине хроматографической колонки до тех пор, пока пары разделяемых веществ не покинут колонку вместе с газом-носителем.

Поскольку сродство различных разделяемых веществ к НФ различно, то в процессе сорбционных—десорбционных переходов компоненты перемещаются вдоль колонки с разной скоростью. Чем больше коэффициент распределения вещества, тем дольше оно находится в НФ, тем позже покидает хроматографическую колонку. В конце концов из хроматографической колонки вместе с газом-носителем выходят зоны (объемы) парообразных хроматографируемых веществ, разделенных полностью или частично.


Если для двух компонентов смеси коэффициенты распределения одинаковы, то они не разделяются. Если же их коэффициенты распределения 5 различны, то разделение происходит, причем первым покидает колонку тот компонент, у которого коэффициент распределения наименьший.

Пары разделенных компонентов вместе с газом-носителем поступают в детектор хроматографа, генерирующий электрический сигнал — тем больший, чем выше концентрация компонента в парогазовой смеси. Электрический сигнал усиливается и фиксируется регистратором хроматографа в виде хроматогратмы, записываемой на диаграммной ленте или на мониторе компьютера (если таковым снабжен хроматограф). Эти хроматограммы и используются для качественной и количественной обработки результатов анализа разделяемой смеси компонентов. Хроматография — гибридный аналитический метод, сочетающей разделение и определение. Метод позволяет разделять многокомпонентную смесь, идентифицировать компоненты и определять ее количественный состав. Поэтому детектирование сигнала (а также запись и обработка его) занимает важное место.

В отличие от ряда других методов, основанных на распределении компонентов между фазами, хроматография — это динамический метод, обеспечивающий многократность актов сорбции—десорбции разделяемых компонентов, так как разделение происходит в потоке подвижной фазы. Этим обусловлена большая эффективность хроматографического метода по сравнению с методами сорбции и экстракции в статических условиях, поэтому хроматографическими методами возможно быстрое разделение сложных смесей, например аминокислот или редкоземельных элементов.

Классификация методов хроматографии.

В основу общепринятых классификаций многочисленных хроматографических методов положены следующие признаки: агрегатное состояние подвижной и неподвижной фаз, механизм взаимодействия сорбент—сорбат, способ получения хроматограмм, техника выполнения (форма слоя сорбента), цель хроматографирования.

По агрегатному состоянию фаз хроматографию разделяют на газовую и жидкостную. Газовая хроматография включает газожидкостную и газотвердофазную, жидкостная — жидкостно-жидкостную, жидкостнотвердофазвую и жидкостно-гелевую. Первое слово в названии метода характеризует агрегатное состояние подвижной фазы, второе — неподвижной.

По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматографии:

распределительная хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе (газожидкостная хроматография) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах;

ионообменная хроматография — на разной способности веществ к ионному обмену;

адсорбционная хроматография — на различии в адсорбируемости веществ твердым сорбентом;

эксклюзионная хроматография — на различии в размерах и формах молекул разделяемых веществ,

аффинная хроматография — на специфических взаимодействиях, характерных для некоторых биологических и биохимических процессов.

Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор, и т. п. Если одно из соединений пары удерживается ковалентной связью на носителе, то последний можно использовать для избирательного извлечения второго соединения пары.

Этим видами не исчерпываются все механизмы разделения, например, существует осадочная хроматография, основанная на образовании отличающихся на растворимости осадков разделяемых веществ с сорбентом, адсорбционно-комплексообразовательная, основанная на образовании координационных соединений разной устойчивости в фазе или на поверхности сорбента, и др. Следует помнить, что классификация по механизму весьма условна: ее используют в том случае, если известен доминирующий механизм; часто процесс разделения протекает сразу по нескольким механизмам.

По способу получения хроматоргамм различают фронтальный, элюентный и вытеснительный способ.

Фронтальный способ наиболее прост по выполнению. Через хроматографическую колонку с сорбентом непрерывным потоком пропускают раствор исследуемого вещества или газовую смесь. Если компоненты различаются по сорбируемости, то соответственно этому они располагаются в колонке. Однако 7 они разделяются не полностью. В чистом виде может быть выделен лишь первый, наиболее слабо сорбирующийся компонент, который движется вдоль слоя сорбента впереди остальных. За зоной первого компонента следует в непосредственном контакте зона, содержащая первый и второй компоненты. Третья зона содержит смесь первого, второго, третьего и т.д. компонентов. В некоторый момент времени сорбент насытится и наступит «проскок», т. е. из колонки начнет выходить первый, наиболее слабо сорбирующийся компонент. Если пропускать жидкость или газ, выходящие из колонки, через детектор концентраций и наносить показания его в течение всего опыта на график, то полученная выходная кривая будет иметь форму ступенчатой кривой. Число ступеней равно числу разделяемых компонентов смеси.


Элюентный (проявительный) способ выгодно отличается от фронтального тем, что он позволяет полностью разделить многокомпонентную смесь. В отличие от фронтального способа исследуемую смесь вводят в колонку в виде порции раствора или газа, а не непрерывно, как при фронтальном способе. После введения такой порции колонку промывают растворителем или газом-носителем (проявляют). На выходе из колонки детектор фиксирует непрерывно концентрацию, а связанный с ним регистрирующий прибор записывает выходную кривую в виде ряда пиков, число которых соответствует числу разделенных компонентов.

Вытеснительный способ отличается от фронтального и элюентного тем, что после введения пробы исследуемой смеси колонку промывают растворителем или газом-носителем, к которым добавлены растворимое вещество или вещество в газообразном (парообразном) состоянии. Это вещество должно адсорбироваться сильнее любого из компонентов разделяемой смеси и называется вытеснителем, так как оно, обладая наибольшей адсорбируемостью, вытесняет более слабо адсорбирующиеся компоненты. Благодаря эффекту адсорбционного вытеснения, открытому Цветом, происходит вытеснение компонентов из адсорбента в последовательности, соответствующей их адсорбируемости, и компоненты полностью разделяются: при этом зоны компонентов движутся по слою адсорбента с одинаковой скоростью, соприкасаясь между собой, по направлению к выходу из колонки. К моменту полного насыщения адсорбента вытеснителем детектор запишет ступенчатую выходную кривую, отличающуюся от фронтальной кривой тем, что каждая ступень соответствует чистому компоненту. Высота ступени характеризует данный компонент с качественной стороны, а длина ступени пропорциональна количественному содержанию данного компонента в исследуемой смеси. Обязательным условием для хорошего разделения в противоположность элюентному способу является резко выраженная выпуклая форма изотерм адсорбции разделяемых компонентов и вытеснителя. А это условие выполнимо лишь в случае применения высокоактивных адсорбентов: активированных углей березового БАУ, каменноугольного антрацита АГ-2. норита и др.

По технике выполнения выделяют колоночную хроматографию, когда разделение проводится в специальных колонках, и плоскостную хроматографию, когда разделение проводится на специальной бумаге (бумажная хроматография) или в тонком слое сорбента (тонкослойная хроматография).


По цели хроматографирования выделяют аналитическую хроматографию (качественный и количественный анализ); препаративную хроматографию (для получения веществ в чистом виде, для концентрирования и выделения микропримесей); промышленную (производственную) хроматографию для автоматического управления процессом (при этом целевой продукт из колонки поступает в датчик). Хроматографию широко используют для исследования растворов, каталитических процессов, кинетики химических процессов и т. п.

Хроматография в зависимости от механизма сорбции.

Хроматография подразделяется на

молекулярную;

ситовую;

хемосорбционную;

ионообменную.

В молекулярной хроматографии природой сил взаимодействия между неподвижной фазой (сорбентом) и компонентами разделяемой смеси являются межмолекулярные силы типа сил Ван-дер-Ваальса.

К хемосорбционной хроматографии относят осадочную, комплексообразовательную (или лигандообменную), окислительно-восстановительную.

Причиной сорбции в хемосорбционной хроматографии являются соответствующие химические реакции.

Распределение сорбатов между подвижной и неподвижной фазам: адсорбционная хроматография, распределительная хроматография, ионообменная хроматография, осадочная хроматография, аффинная хроматография и эксклюзионная хроматография.

4.Вычислить титр 0,25 н. раствора Ca(OH)2

Пусть V р-ра = V мл, тогда n(Ca(OH)2)= 0,25 Vмоль, а m(Ca(OH)2) =

= 0,25·74 = 18,5 Vграмм

Ответ: T= 18,5 V

V= 18,5 г/мл

5. Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнениях реакций

HNO3 + Cu2S → CuSO4 + Cu(NO3)2 + NO2 + H2O.

H2SO4 + Cu2S → CuSO4 + SO2 + H2O.

14H+N+5O3-2  + Cu2+1S-2 → 2Cu+2S+6O4-2 + Cu+2(N+5O3-2)2 + 10N+4O2-2 +

+ 6H2+O-2


14
1