Файл: Сроп1 реферат тема Проводящий механизм биологических мембран Дисциплина Медицинская биофизика Специальность.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 15.03.2024

Просмотров: 37

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

«ҚАЗАҚСТАН-РЕСЕЙ МЕДИЦИНАЛЫҚ

УНИВЕРСИТЕТІ» МЕББМ



NSEO «KAZAKH-RUSSIAN MEDICAL UNIVERSITY»




СРОП№1

РЕФЕРАТ

Тема: Проводящий механизм биологических мембран Дисциплина: Медицинская биофизика

Специальность: Стоматология
Курс: 1
Группа:113а

Форма выполнения: реферат Подготовил:Тайфуров Айваз

Проверено:Жумабекова Р.

Алматы 2023



Содержание


Введение


    1. Биологические мембраны. Основные функции биомембран.




    1. Общее представление о проницаемости биомембран.




    1. Перенос молекул через мембрану.




    1. Электрические характеристики биомембран.




    1. Строение и функции ионных каналов.




    1. Биологический электрогенез Заключение

Литература Приложение

ВВЕДЕНИЕ

Мембранный транспорт транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов простой диффузии, облегченной диффузии и активного транспорта.

Важнейшее свойство биологической мембраны состоит в ее способности пропускать в клетку и из нее различные вещества. Это имеет большое значение для саморегуляции и поддержания постоянного состава клетки. Такая функция клеточной мембраны выполняется благодаря избирательной проницаемости, т.е. способностью пропускать одни вещества и не пропускать другие. Легче всего проходят через липидный бислой неполярные молекулы с малой молекулярной массой (кислород, азот,
бензол). Достаточно быстро проникают сквозь липидный бислой такие мелкие полярные молекулы, как углекислый газ, оксид азота, вода, мочевина. С заметной скоростью проходят через липидный бислой этанол и глицерин, а также стероиды и тиреоидные гормоны. Для более крупных полярных молекул (глюкоза, аминокислоты), а также для ионов липидный бислой практически непроницаем, так как его внутрення часть гидрофобна. Так, для воды коэффициент проницаемости (см/с) составляет около 10-2, для глицерина – 10-5, для глюкозы – 10-7, а для одновалентных ионов – меньше 10-10.

Перенос крупных полярных молекул и ионов происходит благодаря белкам-каналам или белкам-переносчикам. Так, в мембранах клеток существуют каналы для ионов натрия, калия и хлора, в мембранах многих клеток водные каналы аквапорины, а также белки-переносчики для

глюкозы, разных групп аминокислот и многих ионов. Активный и пассивный транспорт.

Мембраны формируют структуру клетки и осуществляют ее функции. Нарушение функций клеточной и внутриклеточной мембран лежит в основе необратимого повреждения клеток и, как следствие, развитие тяжелых заболеваний сердечно-сосудистой, нервной, эндокринной системы.



    1. Биологические мембраны. Основные функции биомембран.


Элементарная живая система, способная к самостоятельному существованию, развитию и воспроизведению – это живая клетка – основа строения всех животных и растений. Важнейшими условиями существования клетки являются, с одной стороны, автономность по отношению к окружающей среде (вещество клетки не должно смешиваться с веществом окружения, должна соблюдаться автономность химических

реакций в клетке и ее отдельных частях); с другой стороны, связь с окружающей средой (непрерывный, регулируемый обмен веществом и энергией между клеткой и окружающей средой). Живая клетка – открытая система.

Единство автономности от окружающей среды и одновременно тесной связи с окружающей средой необходимое условие функционирования живых организмов на всех уровнях их организации. Поэтому важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран.

Биологическая мембрана (БМ) – пространство между живыми клетками, которое способно защищать клетку, питать и т.д.

Физические, химические и физико-химические свойства биомембран обеспечивают выполнение ими определенных функций, без которых

невозможна жизнедеятельность организма. В самом общем виде применительно к мембранам всех типов многообразие этих функций можно свести к 3 основным: механической, барьерной и матричной. Механическая функция заключается в поддержании морфологической целостности и относительной автономности как клетки в целом, так и внутриклеточных органоидов. Она основана, прежде всего, на механических свойствах мембранных структур. Под барьерной функцией понимают создание биомембраной препятствий для свободного переноса веществ через нее. Для одних агентов биомембрана является непреодолимым препятствием, другие легко проходят сквозь нее, причем, как правило, только в определенном направлении, как того требуют векторные свойства мембраны. Матричная функция. Биомембрана
служит матрицей для белков-рецепторов, ферментов и других физиологически активных веществ, обеспечивая пространственную организацию рецепторных взаимодействий, метаболических реакций, переноса энергии и других метаболических процессов. Так, биомембраны объединяют встроенные в них ферменты в единый конвейер, где каждый из них действует согласованно с остальными.



    1. Общее представление о проницаемости биомембран.


Проницаемость биологических мембран - важнейшее свойство биологических мембран, заключающееся в их способности пропускать в клетку и из неё различные метаболиты (аминокислоты, сахара, ионы и т.п.). Проницаемость биомембран имеет большое значение для осморегуляции и поддержания постоянства состава клетки, её физико-химический гомеостаз; играет важную роль в генерации и проведении нервного импульса, в энергообеспечении клетки, сенсорных механизмах и др. процессах жизнедеятельности. Проницаемость биомембран обусловлена особенностями строения биомембран, являющихся осмотическим барьером

между клеткой и средой, и служит характерным примером единства и взаимосвязи между структурой и функцией на молекулярном уровне. БМ проницаемы лишь для небольшого числа низкомолекулярных жирорастворимых веществ (глицерин, спирты, мочевина и др.). Такая проницаемость (простая диффузия) играет сравнительно малую роль в процессах переноса веществ через мембраны. Более важные процессы переноса (транслокации) веществ через БМ
происходят с участием специфических систем транспорта. Предполагают, что эти системы содержат мембранные переносчики (белки или липопротеиды) и, возможно, ряд др. компонентов, осуществляющих связанные с транспортом функции (например, рецепторные). Переносчик (или их система) связывает переносимое вещество (субстрат) и может перемещаться в мембране. Если переносчики неподвижно фиксированы в БМ, то считают, что в БМ существуют специфические для переносимого вещества поры или каналы. Если переносчик связывается с субстратом путём невалентных взаимодействий (ионными, гидрофобными и др. силами), то такой процесс называется вторичной транслокацией; различают 3 её типа: облегчённая диффузия (унипорт), котранспорт (симпорт) и противотранспорт (антипорт). Механизм облегчённой диффузии не зависит от переноса др. веществ в клетку или из клетки. Этим способом переносится, например, глюкоза в эритроциты. Котранспорт — совместный транспорт двух (или более) веществ в одном направлении. Так, транспорт глюкозы и аминокислот через слизистые оболочки тонкого кишечника сопряжён с транспортом ионов Na+. Механизм противотранспорта подразумевает сопряжение переноса вещества в одном направлении с потоком др. вещества в противоположном направлении. Этим способом осуществляется противоположно направленный перенос ионов Na+ и К+ в нервных клетках. Процессы сопряжённого транспорта (симпорт и антипорт) имеют большое значение в тех случаях, когда переносимое вещество движется против градиента концентрации (из области меньшей в область большей

концентрации). Такой