Файл: Я. П. Понарин элементарная геометрия том 1 планиметрия, преобразования плоскости москва.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 16.03.2024

Просмотров: 117

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

3.12. Пусть точки A и B лежат внутри окружности a. Инверсия с центром A переводит окружность a в окружность и точку B в точку B
0
, причем лежит вне a
0
. Через можно провести к две и только две касательные прямые. Примените вторую теорему § 28 и ее доказательство. Если a и b — данные окружности, аи окружности инвер- сий, при каждой из которых a → b, тов силу свойства конформности инверсии как w, таки делят углы между a и b пополам. Отсюда следует, что w и ортогональны. Докажите, что окружности ABD и BDC ортогональны. При инверсии с центром B они перейдут в перпендикулярные прямые. Доказываемое равенство следует по теореме Пифагора для треугольника A
0
C
0
D
0 3.16. См. решение задачи 3 § 29.
3.17. Пусть даны окружности и c
1

c
2
= {A
1
, B
1
},
c
2

c
3
= {A
2
, B
2
},
c
3

c
4
= {A
3
, B
3
},
c
4

c
1
= {A
4
, B
4
}. По условию точки A
1
, A
2
, A
3
, принадлежат окружности g (или прямой. Инверсия с центром отображает окружности g, на прямые, а окружности и c
3
— на окружности. Докажите, что в четырехугольнике сумма противоположных углов равна 180

. Инверсия устанавливает эквивалентность утверждения 3.17 с таким утверждением если на прямых AB, BC, CA, содержащих стороны треугольника, даны соответственно точки B
1
, C
1
, A
1
, то окружности AB
1
C
1
,
BC
1
A
1
, CA
1
B
1
, имеют общую точку. Инверсия с центром O отображает окружности на прямые с сохранением величин углов. Если окружности имеют общую точку, то инверсия с центром в этой точке отображает их на прямые. Если данные окружности не пересекаются, то построим какие-либо две пересекающиеся окружности,
ортогональные каждой изданных окружностей (задача 3.06). Инверсия с центром в точке пересечения построенных окружностей переводит их в две пересекающиеся прямые, а две данные окружности — в окружности, ортогональные каждой из этих прямых. Поэтому они имеют центр в точке пересечения прямых. Примените построение инверсных точек с помощью пары окружностей, ортогональных окружности инверсии (второе определение инверсии, п. 26.2).
3.21. Если даны окружности a и b, то существует окружность инверсия относительно которой отображает a на b. Инверсия относительно любой окружности с центром A на w отображает w на прямую,
а инверсию относительно w — в осевую симметрию (задача 3.20). Поэтому образы окружностей a и b при инверсии с центром A равны
Литература Адамар Ж . Элементарная геометрия. — М Учпедгиз, 1957.
[2] Аргун о в Б. И, Бал к М. Б. Геометрические построения на плоскости. — М Учпедгиз, 1955.
[3] Ат ан ас я н Л. Сидр. Геометрия 7—9. — М Просвещение Болт я нс кий В. Г, Яг лом ИМ. Геометрические задачи на максимум и минимум // Энциклопедия элементарной математики.
Кн. 4. — М Наука, 1966. С. 307—348.
[5] Болт я нс кий В. Г. , Яг лом ИМ. Преобразования. Векторы М Просвещение, 1964.
[6] Го т м ан Э. Г. Уравнения, тождества, неравенства при решении геометрических задач. — М Просвещение, 1965.
[7] Го т м ан Э. ГС копе ц ЗА. Решение геометрических задач аналитическим методом. — М Просвещение, 1979.
[8] Го т м ан Э. ГС копе ц ЗА. Задача одна — решения разные Киев Радянська школа, 1988.
[9] Жар о в ВАМ арго лите ПС, Скопец ЗА. Вопросы и задачи по геометрии. — М Просвещение, 1965.
[10] Зете ль СИ. Новая геометрия треугольника. — М Учпедгиз,
1962.
[11] Кантор ПР, Раб бот Ж. М. Площади многоугольников Квант. 1972. № 2. С. 36—41.
[12] Киселе в А. П. Геометрия. — М Учпедгиз, 1962.
[13] Кокс тер ГС. МГ рей т ц ер С. Л. Новые встречи с геометрией М Наука, 1978.
[14] Кокс тер ГС. М. Введение в геометрию. — М Наука, 1966.

[15] Кузнецов а ЛИС копе ц ЗА. Метод подобия при решении планиметрических задач // Математика в школе. 1977. № С. 58—63.
[16] Кузнецов а ЛИ. Сборник упражнений и задач на перемещения и подобия плоскости и пространства. — Ярославль Ярославский пед. ин-т, 1977.
[17] Куш ни р И. А. Применение гомотетии при решении некоторых задач планиметрии // Математика в школе. 1978. № 5. СМ оде нов ПС, Пар хо м е н ко АС. Геометрические преобразования М Изд-во МГУ, 1961.
[19] Перепелки н ДА. Курс элементарной геометрии. Ч. 1. — МЛ Гостехиздат, 1948.
[20] По нар и н Я. ПС копе ц ЗА. Перемещения и подобия плоскости Киев Радянська школа, 1981.
[21] По нар и н Я. П. Преобразования подобия плоскости // Математика в школе. 1979. № 3. С. 62—67.
[22] По нар и н
Я. П.
Гармонический четырехугольник // Квант. № 10. С. 48—52.
[23] Пособие по математике для поступающих в вузы / Под ред. Г. Н.
Яковлева — М Наука, 1982.
[24] Пр ас о лов В. В. Задачи по геометрии, в х ч. — М Наука Сара н ц е в Г. И. Сборник задач на геометрические преобразования М Просвещение, 1975.
[26] Сборник задач по математике для факультативных занятий в классах / Под ред. ЗА. Скопеца. — М Просвещение, 1971.
[27] Скопец ЗА, Жар о в В. А. Задачи и теоремы по геометрии М Учпедгиз, 1962.
[28] Скопец ЗА. Геометрические миниатюры. — М Просвещение

[29] Скопец З. А. По нар и н
Я. П.
Геометрия тетраэдра и его элементов. — Ярославль Волго-Вятское книжное издательство Фал ь к е н штейн Э. М. Признаки перемещений // Математика в школе. 1973. № 6.
[31] Фи ш м ан В. М. Решение задач с помощью геометрических преобразований Квант. 1975. № 7.
[32] Хан Д. ИО решении геометрических задач с помощью векторов Математика в школе. 1974. № 1.
[33] Шары г и н И. Ф. Задачи по геометрии. Планиметрия. — М Наука Шары г и н И. Ф. Теоремы Чевы и Менелая // Квант. 1976. № С. 22—30.
[35] Шары г и н И. Ф. Несколько эпизодов из жизни вписанных и описанных окружностей // Квант. 1990. № 8. С. 66—69.
[36] Шк ля р с кий ДО, Ч е н ц о в Н. Н, Яг лом ИМ. Геометрические неравенства и задачи на максимум и минимум. — М Наука Шк ля р с кий ДО, Ч е н ц о в Н. Н, Яг лом ИМ. Геометрические оценки и задачи из комбинаторной геометрии. — М Наука Шк ля р с кий ДО, Ч е н ц о в Н. Н, Яг лом ИМ. Избранные задачи и теоремы планиметрии. — М Наука, 1967.
[39] Ш о ласте р Н. Н. Задачи на геометрические преобразования Математика в школе. 1976. № 3.
[40] Яг лом ИМ. Геометрические преобразования, в х т. — М.:
ГИТТЛ. 1955. 1956.
[41] Яг лом ИМ, Ат ан ас я н Л. С. Геометрические преобразования Энциклопедия элементарной математики. Кн. 4. — М Физ- матгиз, 1963.
[42] Ян ч е н ко. Применение композиций симметрии при решении задач // Математика в школе. 1975. № 5.
309
Предметный указатель автополярный треугольник, 130
вневписанная окружность, вписанный четырехугольник, двойное отношение, задача Ферма, золотое сечение, изогональное соответствие, 65
изопериметрическая задача, 111
изопериметрическое неравенство,
115
изотомическое соответствие, неравенство Коши—Буняковско- го, 95
— Птолемея, 56
— Чебышева, неравенство треугольника, окружность девяти точек, описанный четырехугольник, ортогональные окружности, 120
— пучки окружностей, 125
ортотреугольник, 34
ортоцентр треугольника, полный четырехвершинник, 131
— четырехсторонник, полюс прямой, 129
поляра точки, полярное соответствие, принцип двойственности, простой четырехугольник, прямая Гаусса, 70
— Обера, 60
— Паскаля, 72
— Эйлера, пучок окружностей, радикальная ось, 118, радикальный центр, соотношение Бретшнайдера, 81
— Стюарта, среднее арифметическое, 96
— гармоническое, 96
— геометрическое, 15, 96
— квадратическое, степень точки, теорема Брианшона, 75, 132
— Ван—Обеля, 20
— Гаусса, 70, 88
— Дезарга, 70
— Карно, 39
— косинусов, 23, 80
— Менелая, 69
— Ньютона, 53
— Паппа, 75
— Паскаля, 72
— Птолемея, 57
— Симсона, 56
— синусов, 21
— Фалеса, 13
— Фейербаха, 45
теорема Чевы, 66
— Штейнера, 28
— Штейнера—Лемуса, точка Лемуана, 145
— Торричелли, формула Брахмагупты, 86
— Герона, 24
— Лейбница, 38
— Эйлера, 36, 43, формулы проекций, 22
центроид треугольника, 30
центроид четырехугольника, 77 311
Яков Петрович Понарин
Элементарная геометрия. Том 1. Планиметрия, преобразования плоскости.
Редактор Семенов А. В.
Издательство Московского центра непрерывного математического образования
Лицензия ИД № 01335 от 24.03.2000 г.
Подписано в печать 07.09.2004 г. Формат 60 × 90 1
/
16
. Бумага офсетная № Печать офсетная. Печ. л. 19,5. Тираж 2000 экз. Заказ №
МЦНМО
119002, Москва, Большой Власьевский пер, Отпечатано с готовых диапозитивов в ОАО Можайский полиграфический комбинат. 143200, г. Можайск, ул. Мира, д. Книги издательства МЦНМО можно приобрести в магазине Математическая книга, Большой Власьевский пер, д. 11. Тел. 241—72—85. E-mail: biblio@mccme.ru