ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.03.2024

Просмотров: 23

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Тема: «Лавинно-пролітниі діоди».

Лавинно-пролітний діод

Нагальна необхідність мініатюризації апаратури НВЧ, підвищення її економічності і надійності викликала швидке зростання робочих частот напівпровідникових приладів. Поряд з великими успіхами в технології транзисторів цьому сприяло відкриття нових фізичних явищ в напівпровідниках.

Одним з перших явищ такого роду було виявлене НВЧ випромінювання при ударній іонізації в р-п - переходах, яке послужило основою для створення нових приладів – лавинно-пролітних діодів (ЛПД).

Лавинно-пролітний діод - напівпровідниковий діод, що має негативний диференціальний опір в НВЧдіапазоні внаслідок розвитку так званої лавиннопролітної нестійкості. Остання обумовлена ударною іонізацією та дрейфом носіїв заряду в р-n - переході в режимі зворотного зміщення.

Теоретичні розробки з описом ідеї створення ЛПД вперше були викладені У.

Рідом в 1958 році, тому базовий варіант лавинно-пролітного діода на основі асиметричного p-n-переходу зазвичай називають діодом Ріда.

Генерація НВЧ коливань в такого сорту германієвих структур вперше спостерігалася в 1959 році Тагером А.С., а потім в 1965 році на кремнієвих діодах Р. Л.

Джонсоном.

Виникнення негативного опору в ЛПД обумовлено двома фізичними процесами, що мають кінцеві часи протікання в області просторового заряду (ОПЗ) p-n-переходу в режимі лавинного множення. Перший процес пов'язаний з часом наростання

лавинного струму, а другий процес пов'язаний з проходженням носіїв через пролітну область. Їх суперпозиція призводить до появи фазового зсуву між струмом і напругою на відводах діода. Одним з основних критеріїв, необхідним для роботи ЛПД,

є приблизна рівність між періодом коливань НВЧ поля і характерним часом прольоту носіїв через ОПЗ.

В наш час ЛПД є одним з найбільш потужних джерел НВЧ-випромінювання.

Основними представниками сімейства ЛПД є діод Ріда, асиметричний різкий p-n-

перехід, симетричний p-n-перехід (діод з двома дрейфовими областями), діод з двошаровою базою, діод з тришаровою базою (модифікований діод Ріда) і p-i-n-діод.

Для виготовлення ЛПД використовують кремній та арсенід галію.

Будова і зонна діаграма

Розглянемо будову і параметри ЛПД на основі класичного діода Ріда зі структурою p+-n-i-n+ (рис.). Діод складається з сильно легованого р+-еміттера і неоднорідно легованої n-бази (рис. 1, а). Вузький шар n-бази легований сильно (n-шар), інша частина бази легована слабо (i-шар). Розподіл поля в такій структурі для зворотної напруги U0, більшої, ніж напруга пробою Ui, показано на рис. 1 (б). При цьому напруженість поля в області р-n-переходу перевищує поле ударної іонізації Ei і поблизу р-n-переходу генеруються електронно-діркові пари (область множення). Дірки швидко пролітають до електрода крізь вузький сильно легований емітер, не надаючи істотного впливу на роботу приладу. Електрони, покинувши область множення, пролітають потім протяжну слабо леговану n- область (область дрейфу).


В області множення і в області дрейфу електрони

рухаються з однією і тією ж дрейфовою швидкістю, що не залежить від напруженості поля - швидкістю насичення υs. Значення поля Es, при якому дрейфова швидкість електронів насичується, становить для електронів в Si і GaAs величину 104 В/см, що значно менше значення поля в області множення (3-5) 105 В/см. Характерне значення υs ~107 см/с.

Схема, зонна діаграма, розподіл концентрації легуючої домішки N, електричного поля E та коефіцієнта ударної іонізації в діоді Ріда при напрузі, близькій до напруги лавинного пробою

Принципи генерації

Нехай крім постійної напруги U0 до діода прикладена змінна напруга U частотою f (рис. а). З ростом напруги U відбувається різке збільшення концентрації носіїв в області множення внаслідок експоненціального характеру залежності коефіцієнта ударної іонізації від поля. Однак оскільки швидкість росту концентрації електронів dn/dt пропорційна вже наявній в області множення концентрації n, момент, коли n досягає максимуму, запізнюється по відношенню до моменту, коли максимуму досягає напруга на діод (рис. б). В умовах, коли υs не залежить від поля, струм провідності в області множення Iс пропорцій концентрації n: Ic = enυsS (е - заряд електрона, S - площа діода). Тому крива на рис. б являє собою також і залежність струму Ic в області множення від часу.

 

Коли напруга на діоді спадає і

 

концентрація носіїв в області множення

 

різко зменшується, струм на електродах

 

приладу I (повний струм) залишається

 

постійним (рис. в). Згусток електронів що

 

сформувався в області множення рухається

 

через область дрейфу з постійною

 

швидкістю υs. Поки згусток електронів не

 

увійде у контакт, струм через діод

 

залишається постійним (теорема Рамо -

 

Шоклі). З порівняння рис. а і в видно, що

 

напруга, яка подається на ЛПД,

 

коливається практично в протифазі зі

 

струмом, таким чином має місце

 

від'ємний диференціальне опір. Цей опір є

 

частотно-залежним. Час прольоту носіїв

Залежність напруги (а), концентрації

через область дрейфу, t =L/υs, де L-довжина

області дрейфу, практично дорівнює повній

носіїв (б) та струму (в) на ЛПД від часу

довжині діода. Зміщення фаз між

 

 

струмом і напругою може бути

 

реалізоване тільки на частоті f =1/t (і на

 

гармоніках). Більш точний розрахунок

 

встановлює співвідношення між f і L:


f = v/L

Типова конструкція ЛДП

Механізм виникнення від'ємного диференціального опору є малосигнальним:

коливання спонтанно наростають в резонаторі, налаштованому на відповідну частоту, при подачі на діод досить великого постійного зміщення.

На рис.1 і 2 показана типова структура та конструкція ЛПД із структурою р+-n-n+,

змонтованого на тепловідводній пластині.

Структура лавинно-пролітного діода 1 - контактний шар;

2 – область утворення лавини (р-n- перехід); 3 – область дрейфу електронів;

4 - область дрейфу дірок Конструкція лавинно-пролітного діода з мезаструктурою, змонтованої на тепловідводі:

1 - омічний контакт;

2 - сильно легований шар з електронною провідністю (n+- шар);

3 - слабко легований шар з електронною провідністю (n-шар); 4 - сильно легований шар з дірковою провідністю (р+ - шар); 5 - тепловідводна металізована пластина

Використання ЛПД для генерації НВЧ-коливань

Напівпровідникова ЛПД структура зазвичай монтується в типовий НВЧ корпус. Як правило, діод кріпиться дифузійною областю або металевим електродом на мідний або алмазний тепловідвід для забезпечення ефективного охолодження p-n-переходу під час роботи. Для роботи на частотах, що відповідають резонансної частоті власного контуру діода, достатньо помістити його в розріз коаксіального контуру. При роботі на частотах, відмінних від частоти власного контуру діода, останній розміщують у зовнішньому резонаторі. На рис.1 показана типова схема НВЧ резонатора для вимірювання спектра НВЧ коливань, що генеруються ЛПД, а на рис.2 - спектр НВЧ коливань, що генеруються ЛПД в режимі лавинного множення з негативним опором.

НВЧ-резонатор для ЛПД міліметрового

Спектр коливань, що генеруються p-i-n-

діодом (U = 54 В)

діапазону довжин хвиль

 

Параметри ЛПД

ЛПД широко застосовується для генерування і посилення коливань в діапазоні частот f = (1- 400) ГГц. Найбільша вихідна

потужність діапазону Рвих = (1-3) ГГЦ отримана в приладах із захопленим

об'ємним зарядом лавин, становить сотні Ват в імпульсі. Для безперервного режиму області сантиметрового діапазону найбільше значення вихідної потужності і ККД досягнуте на ЛПД з модифікованою структурою Ріда на основі GaAs і

становить Рвих = 15 Вт на частоті 6 ГГц.

На рис. наведено характерні параметри різних типів ЛПД (вихідна потужність, частота і коефіцієнт корисного дії), як для імпульсного, так і для безперервного режиму НВЧ генерації.

Характеристики ЛПД. Поруч у експериментальними точками вказані значення ККД в процентах. SD - одна область дрейфу; DD - дві області дрейфу

Діод Ганна

Діод Ганна - напівпровідниковий діод, що складається з однорідного

напівпровідника, що генерує високочастотні коливання при прикладанні постійного електричного поля.

Фізичною основою, що дозволяє реалізувати такі властивості в діоді, є ефект Ганна, який полягає в генерації високочастотних коливань електричного струму в однорідному напівпровіднику з N-подібною вольт-амперною характеристикою.

Ефект Ганна виявлений американським фізиком Дж. Ганном (J. Gunn) в 1963 г. в

кристалі арсеніду галію (GaAs, сполука А3В5) з електронною провідністю. Ганн виявив,

що при прикладанні електричного поля E (Eпор ≥ 2-3 кВ/см) до однорідних зразків з арсеніду галію n-типу в зразках виникають спонтанні коливання струму. Пізніше він

встановив, що при E> Eпор у зразку, зазвичай у катода, виникає невелика ділянка сильного поля - «домен», який дрейфує від катода до анода зі швидкістю ~ υ = 106 м/с і зникає на аноді. Потім у катода формується новий домен, і процес періодично повторюється. Моменту виникнення домену відповідає падіння струму, що протікає

через зразок. Моменту зникнення домену у анода - відновлення колишньої величини


струму. Період коливань струму приблизно дорівнює прогонному часу, тобто часу, за який домен дрейфує від катода до анода.

Зона структура матеріалу

Ефект Ганна спостерігається головним чином у двухдолинних

напівпровідниках, зона провідності яких складається з однієї нижньої долини і кількох верхніх долин. Для того, щоб при переході електронів між долинами виникав від'ємний диференціальний опір, повинні виконуватися наступні вимоги:

середня теплова енергія електронів повинна бути значно меншою енергетичного зазору між побічною та нижньою долинами зони провідності, щоб за відсутності прикладеного зовнішнього електричного поля більша частина електронів перебувала у нижній долині зони провідності;

ефективні маси і рухливості електронів у нижній і верхніх долинах повинні

бути різними. Електрони нижньої долини повинні мати високу рухливість μ1, малу ефективну масу m1* і низку густину станів. У верхніх побічних долинах електрони повинні мати низьку рухливість μ2, більшу ефективну масу m2* і високу густину станів;

енергетичний зазор між долинами повинен бути меншим, ніж ширина забороненої зони напівпровідника, щоб лавинний пробій не наступав до переходу електронів в верхні долини.

З вивчених і таких що знайшли застосування напівпровідникових матеріалів

переліченим вимогам найбільше відповідає арсенід галію (GaAs) n-типу.

Розглянемо міждолинний перехід електронів в GaAs. Прикладемо до однорідного зразку електричне поле. Якщо напруженість поля в зразку мала, то всі електрони перебувають у нижній долині зони провідності (в центрі зони Бріллюена). Оскільки середня теплова енергія електронів значно менша енергетичного зазору між дном верхньої та нижньої долин зони провідності, вони не переходять в верхню долину (рис. ).

Схематична діаграма, що показує енергію електрона в залежності від хвильового числа в області мінімумів зони провідності арсеніду галію n- типу


Механізм генерації

Електрони нижньої долини мають малу ефективну масу m1* і високу рухливість μ1. Густина струму, що проходить через зразок, визначається концентрацією електронів у нижній долині n1 (n1 = n0, де n0 - рівноважна концентрація електронів в напівпровіднику):

J = en1υ = en1μЕ.

Збільшимо прикладена електричне поле. З ростом поля зростає швидкість дрейфу електронів. На довжині вільного пробігу l електрони набирають енергію eEl, віддаючи при зіткненнях з фононами кристалічної гратки меншу енергію. Коли напруженість поля досягає порогового значення Eпор, з'являються електрони, здатні переходити в верхню долину зони провідності.

Подальше збільшення поля приводить до зростання концентрації електронів у верхній долині. Перехід з нижньої долини у верхню супроводжується значним

зростанням ефективної маси і зменшенням рухливості, що веде до зменшення швидкості дрейфу. При цьому на вольт-амперній характеристиці зразка з'являється ділянка з негативним диференціальним опором (НДО)

N-подібна вольт-амперна

характеристика

Для виникнення від'ємного диференціального опору необхідний одночасний перехід більшості електронів з центральної долини в бічну при пороговій напруженості електричного поля (рис.). Але отримати статичну ВАХ, що відповідає суцільний кривій, не вдається, тому що в кристалі або поблизу невипрямних контактів завжди є неоднорідності, в результаті чого виникають локальні напруженості електричного поля, які перевищують середню напруженість.

Перетворення в цих місцях «легких» електронів у «важкі» ще більше збільшує неоднорідність електричного поля. Тому практично не відбувається одночасний перехід більшості електронів в кристалі з центральної долини в бічну і статична ВАХ залишається без ділянки з НДО.

Розподіл електронів при різних значеннях напруженості поля

УТВОРЕННЯ ДОМЕНІВ

Розглянемо зразок довжиною l, до якого прикладена зовнішня напруга. В однорідному напівпровіднику електричне поле приблизно однаково по всій довжині зразка. Але якщо в зразку є локальна неоднорідність із підвищеним опором, то напруженість поля в цьому місці зразка буде вищою, отже при збільшенні напруженості зовнішнього поля критичне значення Eпор виникне в першу чергу в цьому перерізі. Це означає накопичення в цій області (а не в усьому кристалі) важких електронів і зниження їх рухливості, а значить і підвищення опору. Новоутворена зона з високим вмістом важких електронів називається електричним доменом. Під дією прикладеного поля домен починає переміщатися уздовж зразка зі швидкістю υ ~ 106 м/с.

Ліворуч і праворуч від електронного домену рухатимуться легкі електрони з більш високою швидкістю, ніж важкі. Зліва вони будуть наганяти домен і утворювати область підвищеної концентрації електронів (область негативного заряду), а праворуч легкі електрони будуть іти вперед, утворюючи область, збіднену електронами (область позитивного заряду).

При незмінній напрузі встановиться динамічна рівновага між швидкостями електронів усередині і поза домену. При досягненні доменом кінця

зразка (анода), домен руйнується, струм зростає, відбувається утворення нового домену, і процес повторюється заново.

Незважаючи на те, що в кристалі може бути кілька неоднорідностей, завжди існує тільки один домен. Оскільки після зникнення електричного домену новий домен може виникнути на іншій неоднорідності, для спостереження і використання ефекту Ганна потрібні дуже чисті та однорідні зразки.

Утворення домену у напівпровіднику