ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.03.2024
Просмотров: 29
Скачиваний: 0
Схемні позначення різновидів оптронів:
а) діодний; б) резисторний; в) транзисторний; г) тиристорний
ОПТРОНИ ТА ЇХ ЗАСТОСУВАННЯ
•Швидкий розвиток оптоелектроніки зробив можливим у багатьох випадках замінити елементи електронних схем оптронами. Деякі приклади такої заміни наведені у табл.
|
Електрорадіокомпонент |
|
|
Оптронний аналог |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
Імпульсний трансформатор
Перемикач
Змінний резистор
Потенціометр
Змінний конденсатор
ОСНОВИ МІКРОЕЛЕКТРОНІКИ
•Мікроелектроніка – це галузь електроніки, пов'язана з розробленням, виготовленням і експлуатацією мікроелектронних виробів.
•Розвиток електронної техніки у другій половині ХХ століття відбувається за такими етапами.
•1. 50-ті роки ХХ ст. – етап вакуумної електроніки. Елементна база останньої – елекронно-вакуумні прилади. Відбувається мініатюризація електронних ламп і пасивних елементів, оптимізація їх характеристик і параметрів, застосовується об'ємний монтаж. Це дозволило підвищити щільність упакування до 200 елементів на 1 дм³ (0,2 елемента на 1 см³).
•2. 60-ті роки ХХ ст. – етап дискретної напівпровідникової електроніки.
Здобутки цього етапу відображені, зокрема, в попередніх розділах цього навчального посібника. Поява і широке впровадження транзисторів, які разом з мініатюрними пасивними елементами утворюють якісний стрибок у мініатюризації пристроїв електроніки, сприяють підвищенню надійності, економічності, зниженню габаритів і маси. Актуалізуються функціонально-вузловий метод конструювання електронної техніки: не з окремих радіодеталей, а з уніфікованих функціональних вузлів – підсилювачів, генераторів, перетворювачів, тригерів тощо. Застосовуються модулі (мікромодулі) із щільністю упакування 2 елементи на
1 см³.
•3. 70-ті роки ХХ ст. – етап мікроелектроніки. Перехід до застосування інтегральних схем (ІС). «Схема» в цьому терміні набуває нового значення: це пристрій, вузол. «Інтегральна» вказує на об'єднання великої кількості електрично з'єднаних елементів у одному виробі (корпусі). В ІС зникає необхідність застосування численних паяних з'єднань, які знижують надійність; зменшуються габарити і маса, а відтак вартість електронних виробів, оскільки зменшується кількість складальних і монтажних операцій. ІС на цьому етапі містять у собі 10-40 еквівалентних елементів (біполярних транзисторів, резисторів, конденсаторів, МДН-структур тощо). Кожна інтегральна схема виконує порівняно просту закінчену функцію (підсилювач, формувач, логічний елемент, тригер, лічильник тощо) і оформляється в автономному корпусі. Подальший розвиток мікромініатюризації до 1000 елементів на кристалі.
•4. 80-ті роки ХХ ст. – етап комплексної мікромініатюризації електронної техніки,
етап великих інтегральних схем (ВІС) і надвеликих інтегральних схем (НВІС).
ВІС порівняно з ІС малого рівня інтеграції більш надійні, дешевші, менші за габаритами. Поява мікропроцесорів дозволила замінити апаратурне (схемне) проектування електронної техніки програмуванням універсальних структур згідно з виконуваною ними функцією.
•5. 90-ті роки ХХ ст. – оголошений етап так званої функціональної мікроелектроніки. Втім, на пострадянському просторі внаслідок великих політико-економічних зрушень цей етап був значною мірою провалений, хоча світова електроніка продовжувала неухильно розвиватися. Елементна база цього етапу – ІС, які функціонують на базі нових фізичних явищ і принципів
(оптоелектроніка, акустоелектроніка, хемоелектроніка, магнітоелектроніка,
поляроніка тощо). Особливістю елементів функціональної мікроелектроніки є застосування середовищ з розподіленими параметрами, в яких не вдається виділити окремі області, що виконують функції звичайних радіоелементів. Тому зрештою це електронні схеми, які не містять елементів і міжз’єднань у звичайному розумінні. Такі схеми можна характеризувати лише в цілому з огляду на функцію, що ними виконуються, причому вони можуть мати такі характеристики, яких не мають звичайні радіосхеми.
•Мікроелектронний виріб – електронний пристрій з високим ступенем інтеграції (об'єднання) електрорадіоелементів.
•Інтегральна схема (ІС) – мікроелектронний виріб, який виконує певну функцію перетворення та обробки сигналів і має високу щільність упакування електрично з'єднаних елементів (більше ніж 5 елементів на 1 см³). З точки зору виготовлення і експлуатації ІС розглядається як єдине ціле і складається з елементів та компонентів.
•Елемент ІС – частина ІС, що реалізує функцію будь-якого радіоелемента (транзистор, діод, резистор, конденсатор). Він не може бути відділеним від ІС як самостійний виріб і виконаний у кристалі ІС. Наприклад, елементами ІС є біполярні транзистори і діоди у напівпровідникових мікросхемах, плівкові резистори в гібридних мікросхемах.
•Компонент ІС – частина ІС, яка реалізує функцію будь-якого електрорадіоелемента. Однак компонент є самостійним виробом, що виготовляється окремо від ІС і може бути відділений від ІС. Наприклад, біполярні транзистори і діоди в гібридних ІС.
•Напівпровідникова ІС – це ІС, у якої всі елементи і міжз’єднання виконані в об'ємі і на поверхні напівпровідникової пластини (рис. ).
|
|
|
|
Дифузійний |
МДН-конденсатор |
|
|
||
|
Транзистор V |
|||
|
|
резистор R |
||
|
|
|
|
|
|
|
|
Структура напівпровідникової ІС
•Плівкова ІС - це ІС, у якої всі елементи і міжз’єднання виконані у вигляді різних плівок, нанесених на поверхню діелектричної підкладки.
•Гібридна ІС являє собою комбінацію плівкових пасивних елементів і активних компонентів, розміщених на спільній діелектричній підкладці (рис. ).
•Суміщена ІС − це мікросхема, в якій активні елементи розміщені в об'ємі напівпровідникового кристала, а пасивні, виготовлені за плівковою технологією, наносяться на попередньо ізольовану діелектриком поверхню напівпровідникового кристала (рис. ).
Структура ГІС
ЕЛЕМЕНТИ КОНСТРУКЦІЇ ІС
•Корпус ІС – призначений для захисту ІС від зовнішніх впливів і для з'єднання із зовнішніми електричними колами за допомогою виводів. Разом із корпусними випускаються і безкорпусні ІС.
•Підкладка ІС – заготовка, призначена для виготовлення на ній елементів гібридних ІС, міжз’єднань і контактних площадок.
•Напівпровідникова пластина − заготовка з напівпровідникового матеріалу, яка застосовується для виготовлення напівпровідникових інтегральних схем (рис. поз.
1).
•Кристал ІС, чіп – частина напівпровідникової пластини (прямокутник 5х5 мм), у об'ємі і на поверхні якої сформовані елементи ІС, міжз’єднання і контактні майданчики (рис. поз. 2).
•Контактні майданчики – металізовані ділянки на підкладці або кристалі, призначені для приєднання до виводів корпуса ІС, а також для контролю її електричних параметрів і режимів (рис. поз. 3).
•Мікроскладання – мікроелектронний виріб, який виконує певну функцію і складається з елементів, компонентів і інтегральних схем (корпусних і безкорпусних) з метою мікромініатюризації електронної техніки.
•Мікроблок – мікроелектронний виріб, який, окрім мікроскладань, містить ще інтегральні схеми і компоненти.
•Серія ІС – це сукупність ІС, які можуть виконувати різноманітні функції, але мають єдине конструктивно-технологічне використання і призначені для спільного застосування (напр., серія 133, серія 155, серія 140)
Напівпровідникова пластина, чіп, контактний майданчик
КЛАСИФІКАЦІЯ IC
• 1. За технологією виготовлення ІС поділяють на:
напівпровідникові; плівкові; гібридні.
•2. За функціональними призначеннями:
аналогові (АІС); цифрові (ЦІС).
•3. За ступенем інтеграції, який оцінюється показником k = lgNe,
де Ne – число елементів і компонентів у складі ІС:
малої інтеграції:
Ne ≤ 10, k = 1,
10 < Ne ≤ 100, k = 2;
середньої інтеграції:
100 < Ne ≤ 1000, k = 3;
великі інтегральні схеми (ВІС):
1000 < Ne ≤ 10000, k = 4;
надвеликі інтегральні схеми (НВІС):
10000 < Ne ≤ 100000, k = 5.
•4. За функціональними можливостями:
універсальні; спеціалізовані.
•5. За типом основного активного елемента:
ІС на біполярних транзисторах; ІС на уніполярних транзисторах (МДН, КМДН).
•6. За конструктивним виконанням:
корпусні; без корпусні.
СИСТЕМА УМОВНИХ ПОЗНАЧЕНЬ ІС
•Упроваджена на підставі ГОСТ 17021-75
•1-й елемент: 1, 5, 6, 7 – напівпровідникові ІС;
•2, 4, 8 - гібридні ІС;
•3 - інші (плівкові, вакуумні).
•2-й елемент
Означає порядковий номер розробки (точніше, даної серії). Може містити 2-3 цифри.
•3-й елемент: ЛА – логічний елемент І – НЕ; ЕН – стабілізатор напруги; ТВ – JК тригер; ТМ – D-тригер; ТМ − D-тригер; ТР – RS-тригер; ІP – регістр; ІE – лічильник; СА – компаратор; ПВ – АЦП; ПА – ЦАП; УВ – підсилювач ВЧ; УР – підсилювач проміжної частоти; УН – підсилювач НЧ; УВ – відеопідсилювач; УЕ – емітерний повторювач; ФВ – фільтр ВЧ; ФН – фільтр НЧ; ГС – генератор синусоїдних сигналів.
Номер серії
1 40 УД 7
Порядковий номер розробки даної ІС в серії (за функціональною ознакою)
Функціональне призначення ІС (У – підсилювач, Д - операційний)
Порядковий номер розробки даної серії
Конструктивно-технологічне виконання ІС
ГІБРИДНІ IC
•Основою мікроелектроніки є метод інтеграції (об'єднання) елементів. При цьому сукупність елементів ІС і міжз'єднань виготовляється в єдиному технологічному процесі – одержують закінчений функціональний вузол. Автономно або разом із додатковими елементами цей вузол власне утворює інтегральну схему.
•Застосовуються дві основні технології виготовлення ІС – гібридна і
напівпровідникова.
До технології виготовлення ІС ставлять 2 суперечливі вимоги:
1 Підвищений ступінь інтеграції (щільності упакування).
2 Необхідно мати універсальні ІС.
•Втім, збільшення ступеня інтеграції ІС обмежує сферу її застосування, тобто призводить до зниження універсальності схеми.
•Наявність двох технологій – гібридної і напівпровідникової – дещо розв'язує цю суперечність. Максимальну щільність упакування дає напівпровідникова технологія, проте вона є складною, і властивості елементів, виготовлених за нею, не завжди задовольняють вимогам ТУ (наприклад, розкид параметрів і т. ін.) Гібридна технологія є більш економною і пристосованою до спеціальних прецизійних пристроїв, дозволяє одержати ІС із кращими властивостями, хоча при цьому з низьким ступенем інтеграції.
•Варто пам'ятати, що, крім напівпровідникових і гібридних ІС, існують ще й
плівкові ІС.
•Плівкова ІС – це така, у якої елементи і міжз'єднання виготовляються з плівок необхідної форми з різними електрофізичними властивостями і розміщуються на поверхні діелектричної підкладки або діелектричної плівки. Однак плівкова технологія не дозволяє виготовляти активні елементи із задовільними параметрами. Відтак чисто плівкові ІС – це пасивні схеми (переважно резистивні розподільники напруги, набір резисторів і конденсаторів, резистивно-ємнісні схеми). Тому всі переваги плівкової технології застосовуються у високопрецизійних гібридних ІС.