Файл: Предмет биологии в мед. Вузе. Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.04.2024

Просмотров: 102

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Транскрипция состоит из стадий инициации, элонгации и терминации.

Инициация транскрипции — сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности (а у эукариот также и от более далеких участков генома — энхансеров и сайленсеров) и от наличия или отсутствия различных белковых факторов.

Элонгация транскрипции

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев — переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II). Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы (терминация).

На стадии элонгации в ДНК расплетено примерно 18 пар нуклеотидов. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади — восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно[2].

В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т. н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.


Терминация

У бактерий есть два механизма терминации транскрипции:

ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК, высвобождая молекулу РНК.

ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю, за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.

Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3' концу фермент добавляет несколько аденинов (…АААА), от числа которых зависит стабильность данного транскрипт.

Транскрипционные фабрики

Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 МДа комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга, а также корректирования новосинтезированного транскрипта[4]. В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные[5] свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с ядерным матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Комплекс транскрипционных фабрик, содержащих РНК полимеразу I, II или III, был проанализирован с помощью масс-спектрометрии.

Связь между геном и белком, структура которого определяется структурой гена впервые была сформулирована в виде гипотезы "1 ген - 1 фермент" Бидлом и Татумом.

24 вопр

Регуляция экспрессии генов у прокариот

Изучение регуляции генной активности у прокариот привело французских

микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели

регуляции транскрипции. Оперон — это тесно связанная последовательность

структурных генов, определяющих синтез группы белков, которые участвуют в

одной цепи биохимических преобразований. Например, это могут быть гены,

которые детерминируют синтез ферментов, участвующих в метаболизме какого-

либо вещества или в синтезе какого-то компонента клетки. Оперонная модель


регуляции экспрессии генов предполагает наличие единой системы регуляции у

таких объединенных в один оперон структурных генов, имеющих общий промотор

и оператор.Особенностью прокариот является транскрибирование мРНК со всех

структурных генов оперона в виде одного полицистронного транскрипта, с которого

в дальнейшем синтезируются отдельные пептиды.

Примером участия генетических и негенетических факторов в регуляции

экспрессии генов у прокариот может служить функционирование лактозного

оперона у кишечной палочки Е. colt. При отсутствии в среде, на которой

выращиваются бактерии, сахара лактозы активный белок-репрессор, синтезируемый

геном-регулятором , взаимодействует с оператором , препятствуя соединению

РНК-полимеразы с промотором и транскрипции структурных генов Z, Y, А.

Появление в среде лактозы инактивирует репрессор, он не соединяется с

оператором, РНК-полимераза взаимодействует с промотором и осуществляет

транскрипцию полицистронной мРНК. Последняя обеспечивает синтез сразу всех

ферментов, участвующих в метаболизме лактозы. Уменьшение содержания лактозы

в результате ее ферментативного расщепления приводит к восстановлению

способности репрессора соединяться с оператором и прекращению транскрипции

генов Z, Y, А.

Таким образом, регуляция экспрессии генов, организованных у прокариот в

опероны, является координированной. Синтез полицистронной мРНК обеспечивает

одинаковый уровень синтеза всех ферментов, участвующих в биохимическом

процессе.

В связи с особенностями организации отдельных генов эукариот и генома в

целом регуляция генной активности у них характеризуется некоторыми отличиями

по сравнению с прокариотами.

У эукариот не установлено оперонной организации генов. Гены,

определяющие синтез ферментов одной цепи биохимических реакций, могут быть

рассеяны в геноме и, очевидно, не имеют, как у прокариот, единой регулирующей

системы (ген-регулятор, оператор, промотор). В связи с этим синтезируемые мРНК

у эукариот моноцистронны, т.е. являются матрицами для отдельных пептидных

цепей. В настоящее время механизмы регуляции и координации активности

эукариотических генов интенсивно изучаются. Установлено, что их

функционирование несомненно подчиняется регуляторным воздействиям, однако

регуляция транскрипции у эукариот является комбинационной, т.е. активность


каждого гена регулируется большим спектром генов-регуляторов (рис. 3.87).

Регуляция экспрессии гена, кодирующего белок Х у эукариот,

двумя регуляторными белками. У многих эукариотических генов, кодирующих белки и транскрибируемых РНК-полимеразой II, в ДНК имеется несколько областей, которые узнаются разными белками-регуляторами. Одной из них является область, расположенная вблизи промотора. Она включает около 100 пар нуклеотидов, в том числе ТАТА-

блок, располагающийся на расстоянии 25 пар нуклеотидов от точки начала

транскрипции. Установлено, что для успешного присоединения РНК-полимеразы II

к промотору необходимо предварительное соединение с ТАТА-блоком особого

белка — фактора транскрипции — с образованием стабильного транскрипционного

комплекса. Именно этот комплекс ДНК с белком узнается РНК-полимеразой II.

Последовательности нуклеотидов, примыкающие к ТАТА-блоку, формируют

требуемый для транскрипции элемент, расположенный перед промотором.

Другая область, играющая важную роль в регуляции активности

эукариотических генов, располагается на большом расстоянии от промотора (до

нескольких тысяч пар нуклеотидов) и называется энхансером (от англ. enhance —

усиливать).

И энхансер, и препромоторный элемент эукариотических генов содержат

серию коротких нуклеотидных последовательностей, которые связываются с

соответствующими регуляторными белками. В результате взаимодействия этих

белков происходит включение или выключение генов.

Особенностью регуляции экспрессии эукариотических генов является также

существование белков-регуляторов, которые способны контролировать

транскрипцию многих генов, кодирующих, возможно, другие белки-регуляторы. В

связи с этим некоторые (главные) белки-регуляторы обладают координирующим

влиянием на активность многих генов и их действие характеризуется плейотропным

эффектом (рис. 3.88). Примером может служить существование белка, который

активирует транскрипцию нескольких специфических генов, определяющих

дифференцировку предшественников жировых клеток.

Регуляция экспрессии многих генов эукариот

одним белком-регулятором

Ввиду того что в геноме эукариот имеется много избыточной ДНК, а в каждой

клетке организма транскрибируется всего 7—10% генов, логично предположение о

том, что у них преобладает позитивный генетический контроль, при котором


активация небольшой части генома оказывается более экономичной, нежели

репрессия основной массы генов.

Несомненной особенностью регуляции транскрипции у эукариот является

подчиненность этих процессов регулирующим влияниям со стороны гормонов

организма. Последние часто играют роль индукторов транскрипции. Так, некоторые

стероидные гормоны обратимо связываются особыми белками-рецепторами,

образуя с ними комплексы. Активированный гормоном рецептор приобретает

способность соединяться со специфическими участками хроматина, ответственными

за регуляцию активности генов, в которых рецепторы узнают определенные

последовательности ДНК.

Специфичность регулирующего воздействия гормона на транскрипцию

обусловлена не только природой самого гормона, но и природой клетки-мишени,

синтезирующей специфический белок-рецептор, который влияет на транскрипцию

определенного для данной клетки набора генов. Примером участия гормонов в

регуляции активности определенных генов может служить влияние тестостерона на

развитие тканей организма по мужскому типу при наличии специфического белка-

рецептора. Отсутствие последнего при мутации соответствующего гена не дает

возможности гормону проникнуть в ядра клеток-мишеней и обеспечить включение

определенного набора генов: развивается синдром тестикулярной феминизации, или

синдром Морриса .

Следующая особенность регуляции генной активности у эукариот связана с

образованием стойкого комплекса ДНК с белками — хроматина (см. разд. 3.5.2.2).

Ведущая роль в компактизации ДНК принадлежит гистонам, поэтому они,

несомненно, участвуют и в процессах регуляции генной активности (см. разд. 3.5.4).

Непременным условием для осуществления транскрипции у эукариот является

предварительная декомпактизация хроматина на соответствующем участке, где

временно утрачивается связь с Hi-гистонами и несколько ослабляется связь с

нуклеосомными гистонами. Правда, нуклеосомная организация хроматина не

утрачивается даже в ходе транскрипции, однако контакт ДНК и негистоновых

белков становится возможным и происходит дерепрессия гена.

Отличительной особенностью регуляции экспрессии генов у эукариот

является возможность ее осуществления не только на стадии транскрипции, но и на