Файл: Реферат по дисциплине Безопасность жизнедеятельности тема Ионизирующее излучение физическая сущность, источники, виды, воздействие на организм и меры защиты (на примере будущей профессии)..docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 25.04.2024

Просмотров: 11

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Нейтронное излучение

- проникающая способность: высокая

- облучение от источника: километры

- скорость излучения: 40 000 км/с

- ионизация: от 3000 до 5000 пар ионов на 1 см пробега

- биологическое действие радиации: высокое

Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Гамма излучение

- проникающая способность: высокая

- облучение от источника: до сотен метров

- скорость излучения: 300 000 км/с

- ионизация: от 3 до 5 пар ионов на 1 см пробега

- биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде.Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. фотонов Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения.

Ренгеновское излучение

- излучаются: энергия в виде фотонов

- проникающая способность: высокая

- облучение от источника: до сотен метров


- скорость излучения: 300 000 км/с

- ионизация: от 3 до 5 пар ионов на 1 см пробега

- биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью [3].
2. Радиационная безопасность

2.1. Воздействие ИИ на организм

1. Альфа излучение

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

2. Бета излучение

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.



Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

3. Нейтронное излучение

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

4. Гамма излучение

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

5. Ренгеновское излучение

Рентгеновское излучение в повышенных дозах провоцирует изменения в кожных покровах, которые похожи на ожог от солнечных лучей. Только при облучении происходит более глубокое и серьёзное повреждение верхнего слоя кожи. Появившиеся на коже язвы требуют затяжного по времени лечения.

Со временем исследователи выявили, что такого пагубного действия реально избежать, если уменьшить дозировку или время. При этом применяется дистанционное управление процедурой.

Вред от получаемых волн иногда проявляется не сразу, а только спустя промежуток времени, постепенно: случаются непрерывные или временные преобразования в структуре эритроцитов, повышается риск развития лейкемии. Возможно характерное образование последствия в виде преждевременного старения и утери эластичности кожи [4].

Для наиболее полной оценки вреда, который может быть нанесен здоровью в результате облучения в малых дозах, определяется ущерб, количественно учитывающий как эффекты облучения отдельных органов и тканей тела, отличающиеся радиочувствительностью к ионизирующему излучению, так и всего организма в целом. Основные пределы доз излечения представлены в таблице 2. В соответствии с общепринятой в мире линейной беспороговой теорией зависимости риска стохастических эффектов от дозы величина риска пропорциональна дозе излучения и связана с дозой через линейные коэффициенты радиационного риска, приведенные в таблице 1:


Таблица 1 – Облучение населения.

Облучаемая группа населения

Коэффициент риска злокачественных новообразований,
x0,1 1/Зв

Коэффициент риска наследственных эффектов,
x0,1 1/Зв

Сумма,
x0,1 1/Зв

Всё население

5,5

0,2

5,7

Взрослые

4,1

0,1

4,2


Таблица 2 – Основные пределы доз

Нормируемые величины

Пределы доз

персонал (группа А)

Население

Эффективная доза

20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год

1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год

Эквивалентная доза за год в

-хрусталике глаза

-коже

-кистях и стопах

150 мЗв

500 мЗв

500 мЗв

15 мЗв

50 мЗв

50 мЗв

Основные пределы доз и все остальные допустимые уровни воздействия персонала группы Б, равны 1/4 значений для персонала группы А [1].

2.2. Меры защиты

Тяжесть заболеваний от воздействия ионизирующих излучений и возможность более тяжелых отдаленных последствий требуют особого внимания к проведению профилактических мероприятий. Они несложны, но эффективность их зависит от тщательности выполнения и соблюдения всех, даже самых малейших, требований. Весь комплекс мероприятий по защите от действия ионизирующих излучений делится на два направления: меры защиты от внешнего облучения и меры профилактики внутреннего облучения. экранирование облучение ионизирующий.

Защита от действия внешнего облучения сводится в основном к экранированию, препятствующему попаданию тех или иных излучений на работающих или других лиц, находящихся в радиусе их действия. Применяются различные поглощающие экраны; при этом соблюдается основное правило — защищать не только рабочего или рабочее место, а максимально экранировать весь источник излучения
, чтобы свести до минимума всякую возможность проникания излучения в зону пребывания людей. Материалы, используемые для экранирования, и. толщина слоя этих экранов определяются характером ионизирующего излучения и его энергией: чем больше жесткость излучения или его энергия, тем более плотный и толстый должен быть слой экрана.

Как было сказано выше, альфа - излучения практически не опасны в отношении внешнего облучения, поэтому при работе с этими источниками не требуется оборудования каких-либо специальных экранов; достаточно находиться на расстоянии более 11 — 15 см от источника, чтобы быть в безопасности. Однако необходимо предупредить возможность приближения к источнику или экранировать, его любым материалом.

Подобным образом решаются вопросы защиты при работе с источниками мягкого бета-излучения, которые также задерживаются небольшим слоем воздуха или простейшими экранами. Источники жесткого бета-излучения требуют специального экранирования. Такими экранами могут служить стекло, прозрачные пластмассы толщиной от 2 — 3 до 8 — 10 мм (особо жесткие излучения), алюминий, вода и др.

Особые требования предъявляются к экранирование источников гамма-излучений, так как этот вид излучений обладает большой проникающей способностью. Экранирование этих источников производится специальными материалами, обладающими хорошими поглощающими свойствами; к ним относятся: свинец, специальные бетоны, толстый слой воды и др. Учеными разработаны специальные формулы и таблицы расчета толщины защитного слоя с учетом величины энергии источника излучения, поглощающей способности материала и других показателей.

Конструктивно экранирование источников гамма-излучений осуществляется в виде контейнеров для хранения и транспортировки источников (запаянных в герметичные ампулы), боксов, стен и межэтажных перекрытий производственных помещений, отдельно стоящих экранов, щитов и т. п. Разработаны разнообразные конструкции аппаратов, облучателей и других устройств для работы с источниками гамма-излучений, в которых также предусмотрено максимальное экранирование источника и минимальная для определенных работ открытая часть, через которую происходит рабочее излучение.

В случаях технической невозможности полной защиты работающих от внешнего облучения следует строго регламентировать время работы в условиях облучения, не допуская превышения установленных предельных величин суммарных суточных доз. Это положение относится ко всем видам работ, и в первую очередь к работам по монтажу, ремонту, очистке оборудования, устранению аварий и т. п., при которых не всегда удается полностью оградить рабочего от внешего облучения.