Файл: Понятие о системе разработки залежей нефти. Рациональная система разработки. Параметры системы разработки.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.04.2024

Просмотров: 113

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Первичное и вторичное вскрытие продуктивного пласта

Методы вскрытия продуктивных пластов

Разновидности оборудования для перфорирования

УСТАНОВКА СТРУЙНОГО НАСОСА

Способы эксплуатации нефтяных и газовых скважин

Фонтанный способ

Газлифтный способ

Насосная эксплуатация скважин

Особенности эксплуатации с помощью штангового насоса

Особенности эксплуатации с помощью центробежного насоса с электроприводом

Общие сведения о поршневых насосах

Выбор скважин-кандидатов для обработки призабойных зон

Основные направления в развитии автоматизированных систем управления технологическим процессом в добыче нефти и газа. Цели и задачи АСУТП. Автоматизированная система управления технологическим процессом (АСУ ТП) установки подготовки нефти (УПН) предназначена:- для управления технологическим процессом УПН, а также поддержания оптимального режима подготовки нефти, газа и сброса воды;- контроля за ходом технологического процесса;- формирования и выдачи отчетной и архивной документацииВ состав типовой УПН входит следующее технологическое оборудование:· газосепараторы;· отстойники; концевые сепарационные установки; блок хим. реагентов ; узел налива нефти; насосы перекачки нефти и воды; узел учета нефти; узел учета газа; резервуары; дренажные емкости; регулирующие клапаны; электрозадвижки; печи.АСУ ТП позволяет осуществлять управление и динамический контроль за технологическими процессами (ТП) на промышленных предприятиях, своевременно и эффективно предотвращать аварийные ситуации, а также осуществлять удаленное управление производством.Задачи АСУ ТП: сбор, обработка и хранение данных о ходе технологического процесса в режиме реального времени; измерение и поддержание в заданных пределах температуры, давления, расхода жидких и сыпучих веществ; управление технологическими линиями, транспортными маршрутами сырья и готовой продукции с применением алгоритмов оптимизации работы оборудования; управление внештатными ситуациями. Функции автоматизации скважин, оборудованных штанговыми глубинными насосами. Автоматическая защита от аварий и разрушений. блок управления станком-качалкой, предназначенный для управления и защиты электродвигателя и обеспечивающий: автоматическое управление двигателем, приводящим в движение станок-качалку, в случае возникновения аварий;отключение этого двигателя посредством импульса, подаваемого электроконтактным манометров при авариях;самозапуск после перерыва в электроподаче двигателя станка – качалки.Автоматизацией ШСНУ предусматривается управление, противоаварийная защита, контроль и диагностика установки. Средствами автоматизации ШСНУ являются:- датчики динамометрирования, ваттметрирования, давления, уровня, несанкционированного доступа к станции управления либо стационарные системы динамометрирования («ДДС-06», «СДА-10»), измерения уровня жидкости в скважине («Микон-811) и др.;Система автоматизации скважин, оборудованных ШГН и приводимых в действие СК, должна выполнять следующие функции:-сбор, первичная обработка и хранение информации о технологических параметрах объекта автоматизации и состоянии оборудования в реальном масштабе времени;-автоматическое регулирование и управление технологическим оборудованием в соответствии с заданной программой;-противоаварийную защиту технологического оборудования, контроль срабатывания защит и блокировок;-исполнение команд с пункта управления;-контроль работоспособности контроллеров, датчиков и исполнительных механизмов;-местное управление технологическим оборудованием;-обмен информацией с пунктами управления;-дистанционное управление состоянием и режимом работы технологическим оборудования;-сигнализацию отклонения параметров от заданных значений, отказов технологического оборудования и элементов системы автоматизации;-регистрацию и хранение информации о контролируемых параметрах, аварийных ситуациях и действиях оперативного персонала;-ведение архивов и представление информации в виде таблиц и диаграмм, в том числе и по дебиту скважины;-учёт наработки технологического оборудования;-оптимизацию режимов работы технологического оборудования и решение задач рациональной эксплуатации скважины.Автоматическая защита представляет собой совокупность технических средств, которые при возникновении ненормальных и аварийных режимов прекращают контролируемый производственный процесс. Автоматическая защита тесно связана с автоматическим управлением и сигнализацией. Система автоматической защиты (САЗ) динамическая, она преобразует выходную величину объекта защиты в сигнал, сравнивает его с предельно допустимым значением и в случае превышения прекращает подачу энергии к объекту. Исполнительным элементом САЗ является контакт, который используется в принципиальной схеме защиты. Оптимизация работы скважин, оборудованных электроцентробежными насосами, с применением телеметрической системы ТМС. Автоматизация скважины, оборудованной погружным электронасосом, заключается в автоматическом отключении электродвигателя погружного насоса при аварийных ситуациях; пуск и остановку по команде с групповой установки и при перерывах подачи электроэнергии, самозапуск, перекрытие выкидного коллектора при повышении и резком снижении давления.Между тем, появление высокоточных ТМС позволяет применять их для проведения «малозатратных» гидродинамических исследований скважин (ГДИС). Сегодня погружная телеметрия эффективно используется для: • Контроля работы электроцентробеж- ного насоса; • Диагностики неполадок УЭЦН и про- ведения предупредительных профи- лактических мероприятий, например, по предупреждению засорения или отложения парафинов на рабочих по- верхностях насоса; • Оптимизации режима работы УЭЦН (работа на максимальной депрессии, оптимизация режима автоматического повторного включения (АПВ)). Применение высокоточной ТМС позволяет: • Получить достоверную информацию о параметрах скважины и пласта (пла- стовое давление, скин-фактор, прони- цаемость, полудлина трещины гидро- разрыва пласта (ГРП)); • Снизить потери нефти при проведении гидродинамических исследований за счет сокращения длительности про- стоя добывающих скважин. Например, появляется возможность выполнять ГДИС в работающих скважинах (без полной остановки), в процессе кото- рых предполагается изменение рас- хода жидкости путем смены частоты работы УЭЦН на одном или нескольких режимах; • Получить дополнительную добычу нефти от геолого-технических меро- приятий (ГТМ) за счет увеличения ка- чества ГДИС. Функции автоматизации дожимных насосных станций при её комплексной автоматизации. Нефть от групповых установок поступает в буферные емкости, в которых поддерживается давление, равное 0,6 МПа, обеспечивающее необходимый при перекачке газированной нефти подпор на приеме перекачивающих насосов. Затем с помощью насосов по напорному нефтепроводу она поступает в пункт назначения. В блочных помещениях размещены также насосы для откачки нефти, появляющейся при утечках через сальники насосов и предохранительные клапаны. Отсепарированный газ после буферной емкости направляется на газосборную систему. Технологический процесс перекачки нефти автоматизирован.Насосная станция состоит из основного оборудования - магистрального и подпорных насосных агрегатов, включая систему КИПиА, и вспомогательного - системы смазки, охлаждения, вентиляции, сбора и отвода утечек.В систему автоматики и управления ДНС входят следующие подсистемы: общестанционной автоматики, насосных агрегатов, вспомогательного оборудования и сооружений.Комплект средств и приборов общестанционной автоматики управления предусматривает:1) централизованный контроль основных параметров станции, их регистрацию, необходимую сигнализацию и защиту;2) отключение насосных агрегатов при отклонении параметров от номинальных;3) регулирование суммарной подачи агрегатов путём дросселирования или перепуска;4) контроль загазованности или возникновения пожара и выполнения соответствующих функций управления;5) дистанционный запуск вспомогательных систем и открытие задвижек на технологических трубопроводах.Подсистема вспомогательного оборудования и сооружений обеспечивает:1) сигнализацию о неисправности рабочего и резервного агрегатов;2) автоматический запуск резервного насосного агрегата.Комплекс приборов и средств автоматизации должен обеспечивать:1) автоматическое регулирование рабочего уровня смеси в сепараторе;2) автоматическую защиту установки (прекращение подачи нефтегазовой смеси в сепаратор) при:а) аварийном повышении давления в сепараторе;б) аварийно-высоком уровне жидкости в сепараторе;3) сигнализацию в блок управления об аварийных режимах работы установки. Функции автоматизации блочных кустовых насосных станций для закачки рабочего агента в пласт. Система автоматики. БКНС оборудована системой контроля и автоматизации работы технологического оборудования, предусматривающей: - работу станции без постоянного присутствия обслуживающего персонала;· ручное местное управление насосами, вентиляторами, электрообогревателями, задвижками; - автоматический контроль технологических параметров насосов, электродвигателей, системы смазки, водяного тракта (расход, давление, температура, уровень вибрации, величина тока электродвигателя и др.); - автоматическое срабатывание электрических защит и аварийной сигнализации.Система автоматики обеспечивает автоматический учет, контроль и передачу на диспетчерский пункт следующих параметров: - давление воды на входе и выходе каждого насоса; - температуру воды; - давление масла в маслосистеме каждого насоса; - температуру масла; - учет потребляемой электроэнергии; - состояние задвижек на входе /откр.- закр./; - состояние задвижек на выходе /откр.-закр./; - состояние всех электродвигателей /вкл. - выкл./; - состояние основных и резервных насосных агрегатов /вкл. -выкл./; - положение входных дверей /откр.-закр./;- температуру воздуха в помещении; - сигнал перемещения допустимого уровня загазованности; - вибрации насосного агрегата; - осевой сдвиг ротора насоса; - утечку воды через сальниковые уплотнители; - расход воды; - температуру подшипников насосного агрегата; - температуру гидропяты насоса; - уровень масел в насосах; - температуру обмоток электродвигателя.Система автоматики обеспечивает защиту насосных блоков от: - падения давления воды на входе; - падения и превышения давления воды на выходе; - превышения потребляемой мощности и тока; - перегрева двигателя.При возникновении указанных неисправностей в любом насосном блоке система автоматики отключает неисправный блок и включает резервный. Расчетный срок службы станции – 20 лет. Функции автоматизации напорного трубопровода. Автоматизация объектов магистральных нефтепроводов (МН) обеспечивает контроль работы оборудования, необходимую последовательность выполнения операций при управлении оборудованием и автоматическую защиту оборудования и трубопроводов. Объекты магистральных нефтепроводов имеют технологические схемы и оборудование, позволяющие проводить комплексную автоматизацию.Объектами автоматизации на магистральных нефтепроводах являются промежуточные нефтеперекачивающие станции (НПС) с магистральными насосными, головные нефтеперекачивающие станции с магистральными, подпорными насосными и резервуарными парками, вспомогательные инженерные сооружения и линейная часть магистральных нефтепроводов.Уровень автоматизации обеспечивает контроль и управление технологическим оборудованием НПС из операторной, несколькими НПС при размещении их на одной площадке, резервуарным парком, узлами учета нефти и вспомогательными сооружениями из местного диспетчерского пункта (МДП), телеконтроль и телеуправление технологическим оборудованием с вышестоящего уровня управления (районного или территориального диспетчерского пункта).В МДП (операторной) размещается комплекс средств системы автоматизации, обеспечивающий сигнализацию текущего и аварийного состояния, управление оборудованием НПС, отображение и регистрацию необходимых технологических параметров.При реконструкции действующих объектов необходимо привести объекты автоматизации в соответствие с правилами и нормами по безопасности на магистральном трубопроводном транспорте согласно Федерального Закона. Обеспечение безопасной эксплуатации автоматизированных установок подогрева нефти при её технологическом обезвоживании и обессоливании. При сборе высокопарафинистых, вязких нефтей, а также нефтей, имеющих высокую температуру застывания с целью обеспечения текучести нефти, необходимо подогревать продукцию скважин от устья скважины до центрального пункта сбора и подготовки нефти и газа. Для подогрева продукции скважин в выкидных линиях применяют устьевые, путевые и трубопроводные нагревателПечь блочная с водяным теплоносителем ПП-1,6 предназначена для подогрева высоковязких нефтей и нефтяных эмульсий с целью снижения давления в нефтесборных трубопроводах, а также при деэмульсации нефти. Кроме того, допускается применение печей для подогрева нефтяных эмульсий, содержащих сероводород и высокоминерализованную пластовую воду. 1-патрубок подвода нефти; 2-патрубок отвода нефти; 3-её транспортное положении; 4-расширительный бачок; 5-лестница; 6-рама; 7-змеевик; 8-дымовая труба; 9-горизонтальный сосуд; 10-продувочная свеча; 11-указатель уровня; 12-газовая инжекционная горелка; 13-П-образная жаровая труба; 14, 15- патрубок подвода и отвода воды; 16-газовый коллектор; 17-ртутный термометр Газовоздушная смесь, сгорая в жаровой трубе, выделяет теплоту, которая через стенку передается теплоносителю.Печь оснащается приборами контроля и автоматического регулирования: технические термометры, электроконтактными термометрами и манометрами, указателем уровня, регуляторами температуры и давления, системой автоматики (сигнализатор погасания пламени и блок автоматики безопасности), электроимпульсный запальник, отключающий клапан.Комплекс приборов обеспечивает:-автоматическое регулирование температуры теплоносителя в сосуде, давления топливного газа перед горелкой и запальником;-технологический контроль за температурой, давлением, уровнем;-сигнализацию в операторный пункт о недопустимом повышении температуры в сосуде подогревателя.Кроме того, позволяет автоматически прекращать подвод газа к горелкам при погасании пламени запальника и горелки, повышении и понижении давлении газа, повышении давления в змеевике, увеличении температуры теплоносителя.Все приборы размещаются непосредственно на печи, исполнение – взрывозащищенное, а блока автоматики безопасности – нормальное (монтируется в операторном помещении). Приборы на газовом коллекторе защищены кожухом. Автоматизированная система измерения дебита скважин. Для контроля за разработкой месторождений на каждой скважине необходимо замерять дебиты жидкости. Кроме того, следует знать количество механических примесей в продукции скважин. Эти данные дают возможность контролировать режим эксплуатации скважин и месторождения в целом, что позволяет принимать нужные меры по ликвидации возможных отклонений.Для измерения дебита применяют сепарационно-замерные установки. Для измерения количества каждого компонента продукции скважины сначала следует отделить их друг от друга, т.е. необходим процесс сепарации. На практике используют индивидуальные и групповые сепарационно-замерные установки.В современных напорных герметизированных системах сбора и транспорта продукции скважины используют АГЗУ.АГЗУ «Спутник – А» (см.схему) предназначена для автоматического замера дебита скважин, контроля за их работой, а также автоматической блокировки коллекторов при аварийном состоянии технологического процесса. Расчетное давление контроля и блокировки составляет 1,6 и 4,0 Мпа.Установка состоит из двух блоков : замерно- переключающего и блока управления (БМА).Замерно-переключающий блок содержит : многоходовый переключатель скважин (ПСМ); гидравлический привод ГП-1; замерной гидроциклонный сепаратор с системой регулирования уровня; турбинный счетчик ТОР; соединительные трубопроводы и запорную арматуру.В блоке управления (БМА) монтируется блок контроллер системы телемеханики, блок питания и электрические нагреватели.Процесс работы установок заключается в следующем .Продукция скважин по сборным коллекторам (11), через обратные клапана (11) и линии задвижек (18) поступает в переключатель (1) ПСМ (переключатель скважин многоходовой). При помощи переключателя ПСМ продукция одной из скважин направляется через задвижку (28) в сепаратор (5), а продукция остальных скважин направляется в общий трубопровод (12) через задвижку (23). В сепараторе происходит отделение газа от жидкости. Выделившийся газ при открытой заслонке (17), поступает в общий трубопровод, а жидкость накапливается в нижней емкости сепаратора. При содержании газа в жидкости при нормальных условиях более 160м3м3 должна применяться заслонка дисковая, которая поставляется по особому заказу. С помощью регулятора расхода (6) и заслонки (17), соединенной с поплавковым уровнемером (2), обеспечивается циклическое прохождение накопившейся жидкости через турбинный счетчик жидкости ТОР с постоянными скоростями, что обеспечивает измерение дебита скважин в широком диапазоне с малыми погрешностями. Регулятор расхода РР соединен двумя импульсными трубками с сосудом и линией после заслонки (17). При перепаде давления РР обеспечивает выход жидкости из сосуда (5) через счетчик ТОР в общий трубопровод. Из общего трубопровода жидкость движется на ДНС или УПСВ. Для предотвращения превышения давления в сосуде (5) на нем установлен предохранительный клапан СППК (4). СППК срабатывает при давлении в сосуде выше допустимого и жидкость из сосуда (5) поступает в дренажную линию. Он тарируется не реже чем 1 раз в год (давление тарировки Р тар=Р раб.сосуда * 11.25). Счетчик ТОР выдает на блок управления и индикации (БУИ) или пункт контроля и управления импульсы, которые регистрируются электромагнитными счетчиками. Счетчик имеет шкалу и механический интегратор, где суммируется результат измерения. Управление переключателем скважин осуществляется БУИ по установленной программе или по системе телемеханики, через КП. При срабатывании реле включается электродвигатель гидропривода (3) и в системе гидравлического управления ГП повышается давление. Привод переключателя ПСМ, под воздействием давления гидропривода ГП, перемещает поворотный патрубок переключателя и на замер подключается следующая скважина. Длительность измерения определяется установкой реле времени в режиме местной автоматики. Время измерения определяется руководством промысла в зависимости от дебита скважин, способов добычи, состояния разработки месторождения и др. Если ЗУ оборудованы системой телемеханики, время замеров выставляется с диспетчерского пульта промысла. Замерные установки оборудованы электрическим освещением, обогревателями и принудительной вентиляцией. Помещение БУИ или ПКУ имеет естественную вентиляцию и электрические обогреватели. Все оборудование смонтировано на металлическом основании. На основании, по периметру рамы, крепятся панели укрытия. Внутренняя полость панелей заполняется теплоизоляционным материалом и обшивается металлическими листами.Установка может работать в трех режимах;через сепаратор на ручном режиме; через сепаратор на автоматическом управлении; через обводной трубопровод (байпасную линию); 1   ...   17   18   19   20   21   22   23   24   ...   27

Функции автоматизации системы измерения количества и качества товарной нефти (СИКН). Система предназначена для автоматизированного коммерческого учета товарной нефти прямым массово-динамическим методом, а так же для определения качественных показателей нефти при ведении документов, предназначенных для операций учета товарной нефти между Поставщиком и Потребителем на объектах нефтепереработки, а так же при проведении учетно-расчетных операций при транспортировке нефти и нефтепродуктов.Функциональные возможности СИКН : Измерения и вычисления в автоматическом режиме СИКН обеспечивает выполнение в автоматическом режиме следующих измерений и вычислений:мгновенных значений:массового расхода через ИЛ, СИКН;объемного расхода через БИК;плотности при температуре и давлении нефти в ИЛ и приведенной к стандартным условиям при плюс 20 ºC и плюс 15 ºCперепада давления на фильтрах БФ;температуры в ИЛ, СИКН, БИК, ПУ;давления ИЛ, СИКН, БИК, ПУ;объемной и массовой доли воды в нефти;массы брутто нефти по каждой ИЛ и СИКН в целом;массы нетто нефти по каждой ИЛ и СИКН в целом;средневзвешенных значений за отчетный период:массового расхода через ИЛ;объемного расхода через БИК;плотности при температуре и давлении нефти в ИЛ и приведенной к стандартным условиям при плюс 20 ºC и плюс 15 ºC;температуры в ИЛ, СИКН, БИК;давления ИЛ, СИКН, БИК;объемной и массовой доли воды в нефти;накопленных значений за отчетный период:массы брутто нефти по каждой ИЛ и СИКН в целом;массы нетто нефти по каждой ИЛ и СИКН в целом.СИКН обеспечивает расхода по каждой ИЛ, БИК; плотности нефти; свободного газа в нефти; давления и температуры в ИЛ, БИК, ПУ; перепада давления на фильтрах; содержание объемной доли воды в нефти;автоматический отбор объединенной пробы пропорционально объему перекачиваемой нефти или пропорционально времени, ручной отбор точечной пробы;автоматизированное выполнение режима контроля метрологических характеристик рабочих преобразователей расхода (ПР) по контрольной линии без нарушения процесса измерения и без нарушения работы нефтепровода, оформление и печать протоколов контроля метрологических характеристик (КМХ);автоматизированное выполнение режимов поверки и контроля метрологических характеристик ПР при помощи поверочной установки без нарушения процесса измерения и без нарушения работы нефтепровода, оформление и печать протоколов поверки и КМХ;контроль метрологических характеристик и поверка рабочего и резервно-контрольного преобразователя расхода по передвижной ТПУ;гарантированное перекрытие потока и наличие устройства контроля протечки (местное) запорной арматуры, протечки которой могут оказать влияние на достоверность поверки и КМХ;контроль перепада давления на фильтрах (местный и дистанционный);автоматический контроль, индикацию и сигнализацию предельных значений параметров Объекты автоматизации в нефтегазовой отрасли. промышленности автоматизированной системы управления. Она дает возможность повысить рентабельность предприятия, улучшить качество производимого продукта и образовать надежное и бесперебойное производство.Все традиционные технологические процессы на предприятиях нефтегазовой промышленности подразделяются на три направления:Автоматика процесса добычи нефти и газа.Автоматика переработки нефтегазового сырья.Автоматика транспортировки нефти и газа к покупателю.Все нефтегазовые предприятия вынуждены использовать в своей работе большие затраты электроэнергии. Если удается снизить эти затраты за счет внедрения только организационно- механических мероприятий, то тогда предприятие получает огромную экономию своих финансовых активов. Вот почему очень актуальной в настоящий момент является внедрение автоматизированной системы управления в предприятия по нефтегазодобыче, по переработке этого сырья и на предприятия нефтехимии. Она позволяет не только получить высококачественный продукт, снизить энергозатраты, но и получить экологически безопасное производство, повысить производительность труда и т.д.АСУ ТП по добыче и переработке нефти и газа представляет из себя целый комплекс программного обеспечения, который дает возможность получать необходимую информацию о состоянии объекта в реальном времени, анализировать ее, отображать через графики и таблицы, заносить в архивные базы для будущего использования и т.д.Все эти задачи на заводе по переработке нефти и газа решаются с помощью система автоматизации из класса MES (Manufacturing Executing System), которые реализуются с помощью таких комплексов:Диспетчерское управление оперативного характера.Согласование балансов материальных затрат.Всеобщий учет производственного процесса.Строгий контроль качества выпускаемого продукта.Анализ и учет затрат по потребляемой электроэнергии.Контроль за исправным состоянием технологического оборудованияПланирование оперативной работы производственного процесса.Глубокий анализ каждого отдельного этапа производственного процесса.Дисциплина 7 Системы сбора и подготовки скважинной продукции Системы сбора и подготовки нефти и газа. Выкидные линии, ГЗУ, нефтесборный коллектор, ДНС, напорные трубопроводы. Системы защиты от разрушения и инцидентов. Система сбора - это совокупность трубопроводных коммуникаций и оборудований, предназначенных для сбора продукции отдел скв и доставки ее до пунктов подготовки нефти газа и воды. Система должна обеспечивать: измерение кол-ва продукции, получаемой из каждой скважины: максимальное использование пластовой энергии для транспортировки продукции скважин до пунктов ее подготовки: сепарацию нефти и газа; отделение от продукции скв свободной воды; доведение нефти до норм товарной продукции; очистка и осушка нефтяного газа; очистка и ингибирование пластовой воды. Системы сбора и подготовки состоят трубопроводов, замерных установок, сепарационных пунктов, резервуарных парков, установок комплексной подготовки нефти, установок подготовки воды и газа, насосных и компрессорных станций.Факторы, влияющие на выбор системы сбора нефти и газа. -величина площади и конфигурация нефтяного местор; -рельеф местности; -физико-химические свойства нефти, нефтяных эмульсий, нефтяного газа; климатические условия месторождения; местоположение месторождения; -устьевые Р и Т; изменение устьевого давления в процессе разработки; газовый фактор; сетка расположения скважин и их число на каждом продуктивном горизонте; -объемы добычи нефти, нефтяного газа и пластовой воды по каждому продуктивному горизонту; источники воды и электроэнергии; наличие железных и шоссейных дорог; -топографическая карта.Выкидная линия - промысловый нефтепровод от СКВ до замерной установки (предназначен -для транспортировки добыв продукта) Оборудуется: обратным клапаном, запорной арматуры, угловым вентилем, манометром, пробоотборник высокого давления. АГЗУ- предназначен для непрерывного тех учета добыв нефтегазожидкостой эмульсии, опред автоматиз режиме. Состоит: патрубки подключения вы клин СКВ(усы), с обратными клапанами, псм(для автом и ручного перевода потока добыв из отд СКВ жид-ти в газосепаратор) ,линии байпаса(обходная линия трубопровода, предназначен для направления потока жид-ти, минуя отключенное оборудование присоед к осн трубопр), сепар емкость-для отд попут газа от жид-ти:оснащена сппк,кип),кип-а(пред для измер тех параметров),сппк(пред для защиты установок от прев допуст давл),зра(тех устр-во,пред для управ потоком раб среды посредством изм площади проходного сечения)Нефтесборный коллектор-трубопроводы от ГЗУ до сборных пунктов наз-ся коллекторы.Для защиты трубопроводов от внеш и внут коррозии используют лакокрасочные, полимерные, битумные покрытия, мастику и др спец покрытия. Организовывают подачу ингибиторов коррозии. Для исключения воздействия блуждающих токов предусмотрена систему электрохим защиты ЭХЗ. Для выполнения очистки внут стенок трубопроводов и проведения внут диагностики трубпр в начале и в конце трубоп устан камеры запуска и приема очистных устройств(КЗОУ,КПОУ)а также средств очистки и диагностики (СОД).Узел контроля коррозии(УКК)пред для опр общей скрости коррозии в трубопр гравимет методом без остановки работы трубопр.(в нач и в конце уст).Гравим метод зак-ся в опр потери массы мет образцов за время их пребыв в инг средах Предупреждение засорения нефтепроводов и методы удаления:отложение парафина:исп паровых передвижных установок,покрыт внут труб лаками,эпоксидными смолами и стеклопластиками, применение ПАВ, применение резиновых шаров(торпед),применение теплоизоляции; отложение солей: хим(применение фосфанатов препят слип и отл) физ(магн поле) прим пресс вод); образование УВ водяных и гидратных пробок:осушка газа, ввод ингибиторов гидратообразований, Система обнаружения утечек-автомат система контролирующая целостность стенки трубопровода. Главная задача состоит выявить факт утечки и опр ее местоположение. СОУ обесп формирование сигнала тревоги о возм налич утечки и отображении инф.Системы используютконтрольноизмерительное оборудование (датчики давления, расходомеры, датчики температуры и т.д.).СДКУ(система диспертч контроля и управления )-сервер СОУ-арм соу=канал передачи инф=локальная станция СОУ.Параметрическая система обнаружения утечек программный комплекс, функционирующий совместно ссистемой диспетчерского контроля и управления на основе использования поступающих в СДКУданных о параметрах работы нефтепровода. Работа комплекса основана на анализе данных телеизмерений, имеющиеся на верхнем уровне АСУ ТП и применения математической модели для принятия решения оналичии утечки. Обезвоживание и обессоливание нефти. Физические основы процесса. Применяемые технологии. При закрытой схеме жидкость нефть с водой и газом со скважин под действием давления на устье поступает по выкидным линиям на ГЗУ групповая замерная установка, где замеряется дебит нефти со скважин. Из ГЗУ нефть направляется в нефтесборный коллектор. По нефтесборному коллектору нефть поступает на 1-ю ступень сепарации, расположенную на центральном сборном пункте ЦСП. На территории центрального сборного пункта находится установка подготовки нефти УПН.На ЦСП осуществляется сепарация газа, обезвоживание, обессоливание нефти. Если нефть с высоким газовым фактором, то газ после сепарационной установки поступает на прием компрессоров газокомпрессорной станции. Компрессорами газ перекачивается до газобензинового завода или в магистральный газопровод и далее до пунктов его потребления. Процесс отделения воды от нефти называют обезвоживанием. При обезвоживании содержание воды в нефти доводится до 1-1,5%. Полное отделение воды от нефти до 0,01% происходит в процессе обессоливания нефти. В процессе обессоливания из нефти удаляются соли. Удаление соли из нефти происходит в процессе пропуска нефти через слой пресной воды. Соли, содержащиеся в нефти, растворяются в пресной воде и удаляются вместе с водой. Процессы разрушения нефтяных эмульсий в промысловой практике осуществляют с помощью нагрева нефти до 50-70° и дозировкой в нее химических реагентов деэмульгаторов. Происходит комплексное воздействие за счет тепла, когда вязкость эмульсии снижается, и капли воды соединяются друг с другом и деэмульгатором, вследствие чего вода отделяется от нефти и осаждается в резервуарах. Применяется также электрический способ разрушения эмульсии, который основан на проявлении разноименных электрических зарядов на противоположных концах каждой капли воды, на взаимном притяжении этих капель и разрушении пленок нефти между этими каплями в результате действия электрического тока высокого напряжения на электроды, находящиеся в потоке эмульсии. при подаче тока, капли нефти соединяются между собой в более крупные частички и вода начинает оседать на дно сосуда.Сепарация-отделение нефти от газа и воды в различных сепараторах :получения нефт газа, умен пенообр,умен пульзаций давл . Виды: двухфазный(г-ж)трехфазный, вертикальный и центробежный. сепарационная секция , осадительная ,секция сбора нефти, секция каплеудаления. Состоит: патрубок ввода, раздаточный коллектор, регулятор давл, жалюзийный каплеуловиель, предохранительный клапан, наклонные полки, поплавовковый уравномер, перегородки, линия сброса, люк,диспергатор, регулятор уровня, сливная труба.Резервуары-отстойникиНа промыслах для приёма, хранения и отпуска сырой и товарной нефти применяют резервуары типа РВС (резервуар вертикальный стальной). Резервуары-отстойники для обезвоживания нефти производят на базе типовых вертикальных резервуаров РВС. Они должны работать с постоянным уровнем нефти (чтобы исключить большие «дыхания») и оборудоваться специальным распределительным устройством, обеспечивающим равномерность подъёма нефтеводяной смеси по всему сечению аппарата. На рис. 9.13 приведена схема одного из вариантов резервуара-отстойника.Резервуар имеет так называемый «жидкостный гидрофильный фильтр». Для более эффективного сочетания процессов обезвоживания нефти и очистки пластовой воды в нефтяную эмульсию до подачи её в резервуар можно добавить горячую дренажную воду из отстойников (или электродегидраторов) окончательного обезвоживания. Место ввода горячей дренажной воды и диаметр подводящего трубопровода должны быть такими, чтобы обеспечить необходимое время перемешивания с достаточной степенью турбулентности (Re

ИНГИБИТОР СНПХ-5311T Для предотвращения отложений карбоната кальция СНПХ-5312 Для предотвращения отложений сульфата и карбоната кальция в условиях высокой минерализации промысловых вод СНПХ-5313 Для предотвращения отложений карбоната и сульфата кальция, сульфата бария, соединений железа (сульфидов, оксидов) СНПХ-5314 Для предотвращения отложений соединений железа (оксидов и гидроксидов), карбоната кальция и сульфата бария СНПХ-5315 Для защиты от отложений сульфата и карбоната кальция СНПХ-5316 Для защиты скважин и нефтепромыслового оборудования от отложений сульфата, и карбоната кальция СНПХ-5325 Для предотвращения отложений сульфата и карбоната кальция в условиях высокой минерализации промысловых вод СНПХ-5317 Для предотвращения отложений сульфата и карбоната бария, стронция, карбоната и сульфата кальция СНПХ-53R Для растворения карбонатных отложений с примесью сульфидов и оксидов железа 5.Состав и свойства АСПО. Механизм формирования АСПО. Факторы, влияющие на образование АСПО. Общая характеристика методов удаления и предотвращения АСПО. В зависимости от природы нефти и содержания в ней твердых углеводородов, а также в зависимости от места отбора проб состав отложений включает : парафины – 9...77 %; смолы – 5...30 %; асфальтены – 0,5...70 %; связанную нефть до 60 %; механические примеси – 1...10 %; воду – от долей до нескольких процентов; серу – до 2 %. В зависимости от содержания органических составляющих АСПО предложено подразделять на три класса: 1. асфальтеновый – П/(А+С) < 1; 2. парафиновый – П/(А+С) > 1; 3. смешанный – П/(А+С)



Зависимость интенсивности отложений АСПВ от обводненности. УЭЦН: При достижении обводненности продукции 30% интенсивность отложений АСПВ резко снижается. Интенсивность АСПО при достижении обводенности продукции 30-35% при эксплуатации УЭЦН приближается к нулю. Для СШНУ характер отложений имеет другой вид. В интервале высокой вязкости водонефтяной эмульсии (при обводненности 40-75%) интенсивность отложений АСПВ снижается, потом снова повышается. Отложения АСПВ для СШНУ имеют место даже при обводненности 95%.
6. Химические методы удаления и предотвращения образования АСПО. Преимущества и недостатки.

Химические методы базируются на дозировании в добываемую продукцию химических соединений, уменьшающих, а иногда и полностью предотвращающих образование отложений. В основе действия ингибиторов парафиноотложений лежат адсорбционные процессы, происходящие на границе раздела между жидкой фазой и поверхностью металла трубы.

Химические реагенты подразделяются на смачивающие, модификаторы, депрессаторы и диспергаторы:

Смачивающие реагенты образуют на поверхности металла гидрофильную пленку, препятствующую адгезии кристаллов парафина к трубам, что создает условия для выноса их потоком жидкости. К ним относятся полиакриламид (ПАА), ИП-1;2;3, кислые органические фосфаты, силикаты щелочных металлов, водные растворы синтетических полимерных ПАВ.

Модификаторы взаимодействуют с молекулами парафина, препятствуя процессу укрупнения кристаллов. Это способствует поддержанию кристаллов во взвешенном состоянии в процессе их движения. Такими свойствами обладают атактический пропилен,низкомолекулярный полиизобутилен, алифатические сополимеры, сополимеры этилена и сложного эфира с двойной связью, тройной сополимер этилена с винилацетатом и винилпиролидоном.

Механизм действия депрессаторов заключается в адсорбции молекул на кристаллах парафина, что затрудняет их способность к агрегации и накоплению. К известным депрессаторам относятся "Парафлоу АзНИИ", алкилфенол ИПХ-9, "Дорад-1А", ВЭО-504 ТюмИИ, "Азолят-7" [1].

Диспергаторы - химические реагенты, обеспечивающие образование тонкодисперсной системы, которая уносится потоком нефти, что препятствует отложению кристаллов парафина на стенках труб. К ним относятся соли металлов, соли высших синтетических жирных кислот, силикатно-сульфанольные растворы, сульфатированный щелочной лигнин. Использование химреагентов для предотвращения образования АСПО во многих случаях совмещается с:


· процессом разрушения устойчивых нефтяных эмульсий;

· защитой нефтепромыслового оборудования от коррозии;

· защитой от солеотложений;

· процессом формирования оптимальных структур газожидкостного потока.

Разработан достаточно широкий ассортимент химических реагентов для борьбы с АСПО. В настоящее время применяются следующие марки реагентов:

· бутилбензольная фракция,· толуольная фракция,СНПХ-7р-1 - смесь парафиновых углеводородов нормального и изостроения, а также ароматических углеводородов,· СНПХ-7р-2 - углеводородная композиция, состоящая их легкой пиролизной смолы и гексановой фракции · ХПП-003, 004, 007 ,· МЛ-72 - смесь синтетических ПАВ;· реагенты типа СНПХ-7200, СНПХ-7400 - сложные смеси оксиалкилированных ПАВ и ароматических углеводородов,· реагент ИКБ-4, оказывающий комплексное воздействие на АСПО и коррозию металла труб, ИНПАР; СЭВА-28 - сополимер этилена с винилацетатом.

Для удаления уже отложившихся АСПО наиболее перспективным является химический метод. В качестве реагентов-удалителей применяют как индивидуальные растворители, так и многокомпонентные составы. В некоторых случаях для повышения эффективности растворитель прогревают или его подают совместно с паром. Композиции и реагенты для удаления АСПО условно подразделяют на следующие группы: 1.Растворитель(однофазные системы) 2.Вода+ПАВ(однофазные системы) 3.Дисперсии растворителей(двухфазные системы) 4.Мицеллярные растворы(однофазные систем


  1. Физические методы предупреждения образования АСПО. Технические средства и технологии использования. Механизм действия. Тепловые методы удаления АСПО. Технологии и технические средства.

Методы, относимые к физическим, основаны на воздействии механических и ультразвуковых колебаний (вибрационные методы), а также электрических, магнитных и электромагнитных полей на добываемую и транспортируемую продукцию. Вибрационные методы позволяют создавать ультразвуковые колебания в области парафинообразования, которые, воздействуя на кристаллы парафина, вызывают их микроперемещение, что препятствует осаждению парафина на стенках труб.


В настоящее время около 30 различных организаций предлагает магнитные депарафинизаторы. Под воздействием магнитного поля в движущейся жидкости происходит разрушение агрегатов, состоящих из субмикронных ферромагнитных микрочастиц соединений железа, находящихся при концентрации 10-100 г/т в нефти и попутной воде.

Физические методы предупреждения АСПО реализуютсяследующими способами:- магнитными индукторами;- применением ультразвуковых колебаний;- применением электромагнитного воздействия;- применением резонансно-волновых устройств.

Все эти способы, в основном, использованы на уровне промысловых испытаний и широкого применения на производстве не нашли. Сведения приводятся для повышения кругозора читателей в этом направлении.Наиболее часто на практике применяются устройства на основе постоянных магнитов, например, так называемые МИОНы.

К тепловым методам относится пропарка труб при их подъеме на поверхность с помощью передвижной паровой установки (ППУ), однако это малоэкономично. Пропарить трубы можно и подачей пара в затрубное пространство. При этом прогреваются и НКТ, и выкидная линия. Этот способ применяется в скважинах, эксплуатирующийся компрессорным способом и в фонтанных скважинах с небольшим затрубным давлением. Существует другой способ расплавления парафина-прокачка горячей нефти с помощью агрегата по депарафинизации (АДП).

Промывки скважин горячей нефтью.

Проблема удаления АСПО решается различными методами, однако одним из основных методов борьбы с АСПО в скважинном оборудовании был и остается метод промывки скважин горячей нефтью объемом от 18 до 27 м3 при температуре 95-1050С. При горячих промывках нефть используется как:теплоноситель; растворитель АСПО; промывочная жидкость.

Для горячей промывки используется звено в составе: агрегата депарафинизации скважин АДПМ-12/150;

двух (или трех) автоцистерн типа АЦ-8,2, АЦ-10, АЦН-12. Норма времени на непосредственную обработку скважины без учета времени на заправку нефтью и времени на дорогу составляет 2,8-3 часа, с учетом всего – 3,5-4,5 часа. Горячая промывка скважин производится в основном СШНУ. При эксплуатации УЭЦН с обводнением продукции до 35% применяются скребки, при обводнении свыше 35% отложения АСПО незначительные. При осложнениях УЭЦН для чистки НКТ применяется горячая промывка нефтью с температурой до 1000С, в большинстве случаев применяется промывка растворителем.


В зависимости от глубины отложений АСПО расход нефти на горячую обработку составляет от 18 до 30 м3. В среднем на одну операцию используется 23,5 т нефти. Для сокращения расхода нефти на ГО разрабатываются и внедряются мероприятия по наращиванию объемов химических методов.

Техника и технология горячей промывки. Как было сказано выше, для горячей промывки скважин в настоящее время применяются агрегаты АДПМ-12/150. Принцип работы агрегата следующий: нефть из автоцистерн забирается насосом и подается в змеевик котла, где нагревается и закачивается в скважину. Температуру нагрева можно регулировать изменением производительности насоса. Оптимальная работа достигается обычно при температуре 95-1050С. В качестве топлива для котла используется дизельное топливо. При отсутствии АДП нефть или воду нагревают в емкостях или автоцистернах при помощи передвижных паровых установок ППУ-3М. ППУ изготавливаются на базе вездеход ных автомобилей «КамАЗ», «Урал». Принцип работы ППУ такой же, как у АДП. Производительность ППУ – 1-1,2 тонны пара в час при температуре пара до 3000С. Разрешенное


  1. Влияние механических примесей на работу нефтяных насосов. Допустимая концентрация при работе УШГН, УЭЦН, УЭВН. Методы борьбы с механическими примесями.

Наличие мехпримесей в добываемой жидкости значительно снижают межремонтный период работы скважин и уменьшают коэффициент подачи и КПД насоса. В связи с этим эффективность борьбы с негативным влиянием мехпримесей на работу ЭЦН и засорением скважин и насосов поверхностным мусором имеет весьма актуальное значение для промысловиков. Основной причиной попадания мусора в скважи­ну с поверхности земли является низкая культура производства при производстве ремонтных и технологических работ. Например, щепки попадают в скважину из-за применения разлохмаченных деревянных прокладок путем прилипания щепок к НКТ и штангам. Источником засорения часто являются также старая краска, полиэтилен, резины и изоленты, фрагменты пластмассовых предметов и растительности.

1. Характер отказов насосного оборудования из-за засорения.

Отказ насосного оборудования в результате засорения рабочих органов штанговых глубинных насосов происходит:

• в результате попадания под клапан посторонних пред­метов и негерметичного закрытия клапана. Это чаще всего происходит с приемным клапаном, чуть реже - с нагнетательным;


• в результате забивания внутреннего сечения плунжера посторонними предметами, АСПО и солями. При этом штан­говая колонна отстает от хода головки балансира СК при ходе вниз, возникают удары траверсы канатной подвески в начале хода вверх;

• из-за попадания в зазор между плунжером и цилиндром насоса мехпримесей: окалины, песка, проппанта, цемента и др.;

• из-за полного забивания фильтра насоса посторонними предметами, АСПО, солями, мехпримесями из пласта.

Отказ УЭЦН из-за засорения рабочих органов происходит гораздо чаще. Как правило, засоряются частично или полностью рабочие колеса и направляющие аппараты первых секций ЭЦН, из-за чего насос начинает работать с низкой про­изводительностью, с вибрацией, что приводит к полному выходу из строя УЭЦН. Это происходит из-за того, что приемная сетка ЭЦН имеет крупные отверстия размером 30x2,5 мм, через которые проходят предметы, застревающие в каналах колес. ЭЦН часто засоряется и мехпримесями из пласта (проп-пант, сульфид железа, песок, минеральные соли...

2. Основные источники и пути засорения скважин и насосного оборудования поверхностным мусором и мехпримесями.

Основные пути попадания наземного мусора и грязи в скважину следующие.

• При бурении и освоении новых скважин и боковых ство­лов

• При текущем и капитальном ремонте скважин

• При глушении, технологических промывках и заливках химреагентов.

Мусор попадает в автоцистерну при ремонте, при откачке амбаров, грязной жидкости с мест порывов трубопроводов, канализационных емкостей. После слива этой жидкости, если не производится тщательная промывка и чистка емкости автоцистерны, вместе с жидкостью глу­шения и промывки грязь и мусор попадают в скважину и, в дальнейшем, на фильтр и прием насоса.

Допустимое количество механических примесей для насосов согласно паспортным данным составляет:

1) для УЭЦН обычного исполнения – до 100 мг/л;

2) для УЭЦН износостойкого исполнения – до 500 мг/л;

3) для УЭЦН коррозионно-износостойкого исполнения – до 1000 мг/л;

4) для ШГН с плунжерами с кольцевыми канавками – до 3000 мг/л;

5) для ЭВН специальных конструкций импортного исполнения – до 1-3%.

Основной причиной появления механических примесей в добываемой жидкости считается увеличение депрессии на пласт и вынос их с призабойной зоны скважины.

Присутствие механических примесей в продукции нефтяных скважин является серьезным осложнением при эксплуатации механизированным способом за счет уменьшения МРП насосов. Статистика причин отказов ЭЦН на месторождении показала, что для высокодебитных скважин высокое КВЧ является одним из основных проблем добычи. Отмечены замены ЭЦН в связи с их заклиниванием, что обусловлено выносом КВЧ в условиях форсированного отбора. Механические примеси могут являться продуктами разрушения коллектора, загрязнениями с насосно-компрессорных труб (продукты коррозии, песок, солеотложения), либо результатом обратного выноса проппанта после ГРП. Допустимые концентрации механических примесей при эксплуатации механизированным способом не должны превышать 0,3 г/л. С учетом вовлечения в разработку новых участков месторождений, сложности строения и неоднородности пластов, а также планируемых ГТМ следует предусмотреть защиту от этого типа осложнений[11].