Файл: Системный анализ, управление и обработка информации Основные понятия Система.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.04.2024

Просмотров: 19

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

  1. Системный анализ, управление и обработка информации

Основные понятия

Система – объект или процесс, в котором элементы-участники связаны некоторыми связями и отношениями.

Подсистема – часть системы с некоторыми связями и отношениями.

Любая система состоит из подсистем, подсистема любой системы может быть сама рассмотрена как система. Границы рассматриваемой системы определяются доступными ресурсами и окружением.

Проблема – описание, хотя бы содержательное, ситуации, в которой определены: цель, достигаемые (достижимые, желательные) результаты и, возможно, ресурсы и стратегия достижения цели (решения). Проблема проявляется поведением системы.

Деятельность (работа) системы может происходить в двух основных режимах: развитие (эволюция) и функционирование.

Функционированием называется деятельность, работа системы без смены (главной) цели системы. Это проявление функции системы во времени.

Развитием называется деятельность системы со сменой цели системы.

При функционировании системы явно не происходит качественного изменения инфраструктуры системы; при развитии системы ее инфраструктура качественно изменяется.

Развитие – борьба организации и дезорганизации в системе, она связана с накоплением и усложнением информации, ее организации.

Под устойчивостью системы понимается ее способность под действием входного сигнала переходить из одного состояния равновесия в другое.

Понятие устойчивости связано с величиной воздействия, вызвавшего изменения состояния системы. Надо учитывать предельное значение входного сигнала.

Принцип управляемости выражает необходимость зависимости показателя эффективности, целевой функции от параметров управления системой (входных сигналов).

Достижимость означает что параметры, как самой системы, так и ее среды должны достичь определенных значений.

Обратная связь означает получение информации о результате управления. Обратная связь может быть отрицательной и положительной.

Отрицательная обратная связь характеризуется тем, что выходной сигнал, воздействующий на вход системы, имеет противоположный знак по отношению к входному, вызывающему изменение состояния системы. Системы с отрицательной обратной связью обычно предназначены для поддержания ее в устойчивом состоянии.


Положительная обратная связь характеризуется тем, что выходной сигнал, подаваемый на вход в качестве обратной связи, имеет одинаковый знак с входным сигналом. Системы с положительной обратной связью неустойчивы.

Свойством адаптивности обладает система, имеющая управление с обратной связью, которая отличается наличием специального адаптивного механизма, накапливающего и анализирующего информацию о прошлых управленческих ситуациях, вырабатывающего новое поведение.

Адаптивное управление присуще сложным системам, которым в процессе управления приходится изменять программы и стратегии поведения путем обучения.

Теория адаптивного управления пока не получила большого развития, в следствие чрезвычайной сложности формирования процессов обучения.

Открытость – означает, что система имеет связь со средой.

Закрытость – система не имеет связи со средой.

Классификация моделей систем (статические, динамические, концептуальные, топологические, формализованные (процедуры формализации моделей систем), информационные, логико-лингвистические, семантические, теоретико-множественные)



Классификацию систем можно осуществить по разным критериям. Проводить ее жестко - невозможно, она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем).

1. По отношению системы к окружающей среде:

a. открытые (есть обмен ресурсами с окружающей средой);

b. закрытые (нет обмена ресурсами с окружающей средой).

2. По происхождению системы (элементов, связей, подсистем):

a. искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.);

b. естественные (живые, неживые, экологические, социальные и т.д.);

c. виртуальные (воображаемые и, хотя реально не существующие, но функционирующие так же, как и в случае, если бы они существовали);

d. смешанные (экономические, биотехнические, организационные и т.д.).

3. По описанию переменных системы:

a. с качественными переменными (имеющие лишь содержательное описание);

b. с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные);

c. смешанного (количественно-качественное) описания.

4. По типу описания закона (законов) функционирования системы:

a. типа "Черный ящик" (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения);


b. не параметризованные (закон не описан; описываем с помощью хотя бы неизвестных параметров; известны лишь некоторые априорные свойства закона);

c. параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей);

d. типа "Белый (прозрачный) ящик" (полностью известен закон).

5. По способу управления системой (в системе):

a. управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально);

b. управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний, и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов);

c. с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Задачей системного анализа является определение свойств изучаемой системы. Изучение этих свойств позволяет в последующем выбрать для соответствующей задачи метод построения модели. Таким образом, системный анализ является инструментом, позволяющим изучать функционирование сложных технологических систем и выбирать методы моделирования таких систем.

Основные задачи системного анализа:

• задача декомпозиции, т.е. разложение системы (проблемы) на отдельные подсистемы (задачи);

• задача анализа заключается в определении законов и закономерностей поведения системы посредством обнаружения системных свойств и атрибутов;

• задача синтеза сводится к созданию новой модели системы, определению ее структуры и параметров на основе полученных при решении задач знаний и информации.

В системном анализе применяются специальные методы моделирования:

– имитационное моделирование, на основе методов статистики и языков программирования;

– ситуативное моделирование, на основе методов теории множеств, теории алгоритмов, математической логики и представления проблемных ситуаций;

– информационное моделирование, на основе математических методов теории информационного поля и информационных цепей.

Кроме того, в системном анализе широко используют методы индукционного и редукционного моделирования.


Индукционное моделирование осуществляется с целью получения сведений о специфике объекта-системы, ее структуре и элементах, способах их взаимодействия на основе анализа частного и приведения этих сведений к общему описанию. Индуктивный метод моделирования сложных систем используется в том случае, когда невозможно адекватно представить модель внутренней структуры объекта. Это метод позволяет создать обобщенную модель объекта-системы, сохраняя специфику организационных свойств, связей и отношений между элементами, что отличает ее от другой системы. При построении такой модели часто используют методы логики теории вероятностей, т.е. такая модель становится логической или гипотетической. Затем определяются обобщенные параметры структурно-функциональной организации системы и описываются их закономерности, с помощью методов аналитической и математической логики.

Редукционное моделирование используют для того, чтобы получить информацию о законах и закономерностях взаимодействия в системе различных элементов с целью сохранить целое структурное образование.

Модели и методы принятия решений

Модельюназывается представление объекта, схемы или идеи в некоторой форме, отличной от самого оригинала. Причин использования моделей (вместо непосредственного взаимодействия с реальной действительностью или проведения эксперимента) три. Первая из них – это сложность многих реальных ситуаций, в результате которой анализ последних по сложности превышает возможности человека. А с помощью модели ситуация может быть предельно упрощена за счет устранения не относящихся к делу или малозначащих данных. Вторая причина связана с необходимостью анализа такой ситуации, которой пока в реальной действительности нет, но которая будет или не будет создана в будущем в зависимости от результатов этого анализа. Моделирование является единственным способом «увидеть» варианты будущего, определить и оценить их возможные последствия. Третья причина проистекает из невозможности проведения натурных экспериментов, когда они желательны.

Эксперимент – это изучение реальной действительности, в которую вводятся дополнительные условия, существенно меняющие ситуацию; после окончания эксперимента данные условия отменяются. Когда провести эксперимент не представляется возможным, на помощь может прийти моделирование.


Существуют три базовых типа моделей:

1. Физическая модель представляет то, что исследуется с помощью увеличенного или уменьшенного описания объекта или системы. (например, уменьшенная фактическая модель завода, уменьшенный чертеж). Такая физическая модель упрощает визуальное восприятие и помогает решить фактические проблемы.

2. Аналоговая модель представляет исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой (например, график, иллюстрирующий соотношения между объемом производства и издержками, организационная схема предприятия).

3. Математическая модель использует цифровые значения, символы для описания свойств или характеристик объекта или события.

Построение модели, как и управление, является процессом. Основные этапы такого процесса:

  • постановка задачи. Построение модели, способной обеспечить правильное решение управленческой проблемы, состоит в верной постановке задачи.

  • построение модели. Разработчик должен определить главную цель модели, какие выходные нормативы или информацию предполагается получить, используя модель и непосредственно создать модель.

  • проверка модели на достоверность. Проверка заключается в определении степени соответствия модели реальному миру.

  • применение модели. Модель нельзя считать успешно выстроенной, пока она не принята, не понята и не применена на практике. Основная причина недоиспользования моделей заключается в том, что руководители опасаются или не понимают, как их применить.

  • обновление модели. Руководство может обнаружить, что форма выходных данных не ясна, желательны дополнительные данные или цели организации изменяются таким образом, что это влияет на критерии принятия решений, следовательно, модель нужно соответствующим образом модифицировать.


3. Модели и методы принятия решений при нечеткой информации.

Человек мыслит нечеткими понятиями: погода хорошая, скорость низкая, настроение хорошее. Очевидно, что каждый может вкладывать в эти понятия совершенно разный смысл: что хорошо для одного, может быть совершенно неприемлемо для другого. Четкая логика (в рамка которой переменная может принимать всего два значения: истина и ложь, 0 и1) учет этого фактора совершенно невозможен. Поэтому в середине XX века Л.Заде была предпринята попытка создания математического аппарата, позволяющего учесть эту особенность мыслительной деятельности человека.