Файл: Добавить в избранное.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.04.2024

Просмотров: 48

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Если статический заряд преимущественно образуется трением, хотя это не единственный путь, то переменный ток возникает в результате незаметных глазу процессов. Величина его пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром. 

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Нужно сказать, что материальный конфликт с Эдисоном наложил сильный отпечаток на судьбы обоих. В тот момент, когда предприниматель отказался от своих обещаний перед Николой Тесла, тогда же и потерял немалую для себя выгоду. Наверняка выдающемуся учёному не понравилось такое вольное обращение, и он выдумал двигатель переменного тока. Нужно сказать, что до тех пор все пользовались постоянным. Вот и Эдисон продвигал этот вид.

Тесла впервые показал, что переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, что резко снижает потери на активном


9.2(продолжение)

сопротивлении. А на приёмной стороне параметры вновь возвращаются к исходным. Что очень удобно. В результате можно неплохо сэкономить на толщине проводов.

Итак, начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. А опыты по передаче энергии на значительные расстояния все расставили по своим местам: не очень удобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.



Отличие переменного тока от постоянного

Переменный ток обладает целым рядом свойств, которые отличают его от постоянного. Но мы вначале обратимся к истории открытия данного явления. Родоначальником явления переменного тока в обиходе человечества можно считать Отто фон Герике. Именно он первым заметил, что заряды бывают двух знаков. Следовательно, и ток может течь в разном направлении. Что касается Тесла, то он больше ориентировался на практическую часть, и в своих лекциях упоминает двух экспериментаторов британского происхождения:

1.Вильям Споттисвуд не удостоился даже странички в русскоязычной Википедии, что касается национальной части, то там даже не упоминается про работы с переменным током. Как и Георг Ом, учёный был прежде всего математиком, и остаётся лишь сожалеть, что с трудом можно узнать, чем именно занимался сей муж науки.

2.Джеймс Эдвард Генри Гордон был намного более близок к практической части вопроса применения электричества. Он много экспериментировал с генераторами и даже разработал один собственной конструкции мощностью 350 кВт. Очень много внимание уделял освещению и снабжению энергией заводов и фабрик.

Считается, что первые генераторы переменного тока были созданы в 30-е годы XIX века. Тогда Майкл Фарадей экспериментировал с магнитными полями. Немногие знают, что это вызывало ревность у сэра Хемфри Дэви, который критиковал ученика за плагиат. Теперь уже сложно сказать, кто именно был прав, но факт остаётся фактом: переменный ток без малого полвека не был никем востребован. В первой половине XIX-го века уже существовал электрический двигатель. Но работал он от постоянного тока.

Именно Никола Тесла впервые догадался, как реализовать теорию Араго о вращающемся магнитном поле. Для этого понадобились целых две фазы переменного тока (со сдвигом 90 градусов).
Попутно Тесла отметил, что возможны и более сложные системы (в своём патенте). Вот почему много позже изобретатель трёхфазного двигателя, Доливо-Добровольский, не смог запатентовать своё детищеТаким образом, длительное время переменный ток никому не был нужен. А Эдисон даже всячески противился внедрению этого явления в обиход.

 

Почему переменный ток используется чаще постоянного

Никола Тесла и вопросы безопасности и эффективности

Никола Тесла вступил в конкурирующую с эдисоновской компанию и всячески продвигал новое явление. Он настолько увлёкся, что часто ставил эксперименты и на себе. Но в отличие от сэра Хемфри Дэви, который укоротил свою жизнь, вдыхая различные газы, Тесла явно добился немалого успеха: прожил до 86-ти лет. Сам учёный обнаружил, что при изменении направления течения тока со скоростью выше 700 раз в секунду сам процесс становится сравнительно безопасным для человека.

Во время своих лекций Тесла брал в руки лампочку с платиновой нитью накала и демонстрировал свечение прибора, пропуская через своё собственное тело токи высокой частоты. Он утверждал, что это

9.2(продолжение)

 не только безвредно, но даже приносит некоторую пользу для здоровья. Ток, протекая лишь по поверхности кожи, одновременно очищает её. Как говорил сам Тесла, экспериментаторы прежних дней (см. выше) не замечали столь удивительных явлений по следующим причинам:

                       Несовершенные генераторы механического типа. Вращающееся поле использовалось в буквальном смысле: при помощи какого-либо двигателя раскручивался ротор. Такой принцип не мог дать токов высокой частоты. Это и сегодня ещё проблематично при нынешнем уровне развития технологии.

                       В простейшем случае применялись ручные размыкатели. В этом случае вовсе нечего говорить о высоких частотах.

Однако вопросы безопасности и по сей день не фигурируют на первом месте. Следует сказать, что частоту 60 Гц (общепринятая в США) предложил сам Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Это сильно отличается от безопасного диапазона. В то же время, проще сконструировать и генератор. И в любом случае переменный ток в обоих смыслах выигрывает у постоянного.

 

Где используется переменный ток

Можно сказать, таким образом, что переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, а читатели сами уже сделают выводы:


1.    Постоянный ток широко применяется в аккумуляторах. По той простой причине, что переменный существует лишь в движении – он не может храниться. Затем в приборе электричество уже преобразуется в нужную форму.

2.    КПД коллекторных двигателей постоянного тока выше. По этой причине в некоторых случаях выгодно применять именно эти разновидности.

3.    При помощи постоянного тока могут действовать различные магниты. Например, в домофонах.

4.    Постоянное напряжение широко применяется в электронике. Потребляемый ток при этом варьируется в некоторых пределах. Но в промышленности он тоже носит название постоянного.

5.    Постоянное напряжение применяется в кинескопах для создания потенциала и увеличения эмиссии с катода. Можно считать эти случаи аналогом блоков питания полупроводниковой техники, хотя иногда различие весьма значительно.

Во всех остальных случаях переменный ток имеет весомое преимущество. Прежде всего, благодаря возможности применения трансформаторов. Даже в сварке теперь уже далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Взять хотя бы шерсть и янтарь, с которыми работал Фалес Милетский.

 

Техника безопасности в обращении с электрическим током.

Действие электрического тока на организм человека

Опасность поражения людей электрическим током зависит от конструкции электрической сети, рода тока, рабочего напряжения, источника питания, состояния изоляции, ограждения и других факторов.

Основные причины электротравм:

                                 неудовлетворительное ограждение токоведущих частей от случайного к ним прикосновения;

                                 выполнение работ под напряжением без соблюдения необходимых мер безопасности;

                                 неудовлетворительное заземление электроустановок;

                                 выполнение работ без защитных средств, когда применение их обязательно;

                                 несоответствие машин, аппаратов, кабелей и проводов условиям эксплуатации;


                                 работа подъемно-транспортных машин вблизи электрических проводов воздушных линий без соблюдения необходимых мер безопасности;

                                 применение переносного ручного электроинструмента, работающего на недопустимом напряжении в условиях повышенной опасности, и др

Прохождение электрического тока через организм человека оказывает действие:

- термическое,

- электростатическое,

- биологическое

9.2(продолжение)

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве крови, кровеносных сосудов

Электростатическое — в разложении крови

Биологическое — в раздражении живых тканей организма, что может привести к прекращению деятельности органов кровообращения и дыхания

Факторы, влияющие на исход поражения человека электрическим током

   - величина тока

   - его напряжения

   - частота

   - сопротивление человека

- продолжительность воздействия

   - пути тока

   - индивидуальных свойств человека

   условия окружающей среды

Для человеческого организма опасны как переменный, так и постоянный ток. Наиболее опасен переменный ток, имеющий частоту 50 Гц; ток частотой 400 Гц менее опасен.

В результате действия электрического тока человек может получить электрический удар, вызывающий поражение его внутренних органов, либоэлектротравму, то есть наружные поражения ткани.

Виды электрических травм:

Токовой ожог — ожог кожи в месте контакта тела с токоведущей частью в электроустановках с напряжением не выше 2 кВ. Электрическая дуга, обладающая высокой температурой и большой энергией, может вызывать обширные ожоги тела, обугливание и даже бесследное сгорание больших участков тела.

Электрические знаки— это пятна серого и бледно-желтого цвета, царапины, ушибы на поверхности кожи человека, подвергнувшейся воздействию тока. Форма знака может соответствовать форме токоведущей части, которой коснулся пострадавший. Лечение электрических знаков в большинстве случаев завершается благополучно, пораженное место восстанавливает чувствительность и эластичность.