Файл: Вопросы к экзамену по предмету Эиэа нагревание проводников постоянным и переменным током, поверхностный эффект, эффект близости.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.04.2024

Просмотров: 52

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Уравнение охлаждения имеет вид

τ = τ 0 е – t / Т,

Анодная и катодная области - размер=10-4см; суммарное падение напряжения=15-30В; напряженность=105-106В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.Ствол дуги - падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см2, за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.ВАХ дугового разряда постоянного тока Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть: Uз - напряжение зажигания и Uг - напряжение гашенияЕсли ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу. Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации. Сопротивление дуги можно определить из ВАХ дуги, активное, независимо от рода тока, переменная величина, падает с ростом тока. Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.21. Условия гашения дуги постоянного токаФизические основы горения дуги. При размыкании контактов электрического аппарата вследствие ионизации пространства между ними возникает электрическая дуга. Промежуток между контактами при этом остается проводящим и прохождение тока по цепи не прекращается. Чтобы погасить дугу постоянного тока, необходимо создать такие условия, при которых в дуговом промежутке при всех значениях тока от начального до нулевого процессы деионизации превосходили бы процессы ионизации.Коммутирующие свойства аппарата описывает его ВАХ, представляющая собой зависимость напряжения на дуге от тока. U=i·Rд. С ростом тока i увеличивается температура дуги, усиливается термическая ионизация и падает эл. сопротивление дуги Rд. При увеличении тока сопротивление дуги уменьшается так резко, что напряжение на ней падает, несмотря на рост тока ВАХ дуги, снятая при медленном изменении тока, называется статической. Вольт-амперные характеристики полученные при быстром изменении тока до нуля, называются динамическими.Она зависит от расстояния между электродами (длины дуги), материала электродов, параметров среды и условий охлаждения. Напряжение на дуге uД можно рассматривать как сумму околоэлектродных падений напряжения uэ и падения напряжения в столбе дуги u Д = uэ + Епlгде Еп — напряженность электрического поля в столбе дуги; l — длина столба дуги.Величина Еп зависит от тока и условий горения дуги. Статические ВАХ дуги изображены на рис. Чем больше длина дуги, тем выше лежит ее статическая ВАХ. С ростом давления среды, в которой горит дуга, также увеличивается напряженность Еи и ВАХ поднимается .Охлаждение дуги существенно влияет на ВАХ. Чем интенсивнее охлаждение дуги, тем большая мощность от нее отводится. При этом должна возрасти мощность, выделяемая дугой. Поскольку при заданном токе это возможно за счет увеличения напряжения на дуге, то ВАХ поднимается, что широко используется в ДУ.Напряжение Uг, при котором дуга гаснет, называют напряжением гашения. Оно всегда меньше напряжения зажигания вследствие повышения температуры контактов и увеличения проводимости межконтактного промежутка. Чем больше скорость снижения тока, тем меньше напряжение гашения дуги в момент прекращения тока.Условия гашения дуги постоянного тока зависят не только от ее вольт-амперной характеристики, но и от параметров электрической цепи (напряжение, ток, сопротивление и индуктивность), которую включают и отключают контакты аппарата. Для гашения дуги необходимо, чтобы количество энергии, подводимой к дуге, было меньше количества тепла, отводимого от нее. При отключении цепи с большой индуктивностью выделяемую в дуге электромагнитную энергию необходимо отвести охлаждением. В связи с этим, чем больше индуктивность цепи и отключаемый ток, тем труднее отключить цепь.22. Коммутационные перенапряжения при отключении токов КЗи пусковых токов в сетях ВН.В зависимости от места приложения можно выделить раз­личные типы перенапряжений. Наибольшее практи­ческое значение имеют фазные перенапряжения. Они воздей­ствуют на изоляцию токоведущих частей электрооборудова­ния от земли или заземленных конструкций. К этой изоляции нормально приложено фазное напряжение. Однако в сетях с изолированной нейтралью следует учитывать, что в про­цессе поиска места замыкания на землю (длительностью от минут до нескольких часов) к фазной изоляции может быть приложено линейное напряжение.Междуфазные перенапряжения рассматриваются при вы­боре междуфазной изоляции, например - расстояний между проводами разных фаз на линиях и подстанциях, обмотками различных фаз трансформаторов, машин, реакторов. Рабо­чим напряжением для этих видов изоляции является линей­ное напряжение.Внутрифазные перенапряжения возникают между раз­личными токоведущими элементами одной и той же фазы, например между соседними витками или катушками об­мотки трансформатора, а также между нейтралью и землей.Перенапряжения между контактами коммутирующих ап­паратов возникают в процессе отключения участка сети или при несинхронной работе двух участков сети.Внутренние перенапряжения возникают в электрических системах в результате коммутаций.Коммутации могут быть оперативными(плановыми), например:а) включение и отключение ненагруженных линий;б) отключение ненагруженных трансформаторов и реакторов поперечной компенсации;в) отключение конденсаторных батарей.Однако чаще внутренние перенапряжения возникают при аварийных коммутациях в результате действия релейной защиты или противоаварийной автоматики.К аварийным коммутациям можно отнести:а) отключение выключателями короткого замыкания;б) автоматическое повторное включение линий;в) внезапный сброс нагрузки и др.Внутренние перенапряжения обычно проявляются в виде колебаний. Всякая электрическая система обладает колебательными свойствами, однако в нормальном режиме работы эти колебательные свойства обычно не проявляются. Колебательные свойства электрической системы, могущие вызвать появление перенапряжений, проявляются при нарушении баланса между генерируемой и поглощаемой энергией. Причиной нарушения баланса может явиться внезапное отключение элементов, способных поглощать энергию (активной нагрузки, сосредоточенных и распределенных сопротивлений и проводимостей схемы).Если параметры колебательного контура соответствуют резонансным или близки к ним, то возникают резонансные перенапряжения - перенапряжения установившегося режима. В системе с элементами, имеющими линейные характеристики может возникнуть линейный резонанс. Если же элементы электрической сети имеют нелинейный характер (ненагруженные трансформаторы, реакторы), то возникает нелинейный феррорезонанс. Резонансным перенапряжениям предшествует переходный режим - коммутационные перенапряжения.В том случае, если условия в колебательном контуре электрической сети далеки от резонансных, то внутренние перенапряжения при коммутациях имеют только переходный характер, т.е. являются коммутационными.Внутренние перенапряжения характеризуются: кратностью , (1)формой кривой перенапряжения, позволяющей определить воздействия на изоляцию и составом оборудования электрической сети, подверженного действия данного вида перенапряжения.Ударный коэффициент перенапряжений:  ,коэффициент установившегося режима: Þ kпер = kуд kуст.Перечисленные характеристики имеют большой статистический разброс, так как их значения зависят от большого числа факторов, в том числе имеющих случайный характер.Амплитуда допустимых перенапряжений на изоляции высоковольтных электрических машин определяется по следующей формуле: U = U ,  (2)где U - номинальное напряжение, U - допустимое напряжение.Допустимая кратность перенапряжений на изоляции машин составляет не более 2,6 - 2,9 по отношению к номинальному фазному напряжению и 2,2 - 2,4 по отношению к максимальному фазному рабочему напряжению.U U ,  (3 )где  - коэффициент импульса при внутренних перенапряжениях для класса напряжений 6 - 35 ;k - коэффициент кумулятивности.24. Гашение дуги в дугогасительной решетке, эл.дуга в решетке из немагнитного и магнитного материалов.Быстро движущаяся дуга встречает существенное аэродинамическое сопротивление при вхождении в решетку. Дойдя до нижнего края пластин, дуга замедляет свою скорость или вовсе останавливается. Аэродинамическое сопротивление (в первом приближении пропорциональное квадрату скорости) падает, и дуга начинает проникать в решетку. Степень снижения скорости дуги или время ее остановки у нижнего края пластин зависят от формы пластин, расстояния между ними, сил, движущих дугу, и общей конструкции решетки. Так, решетка схемы 3 (рис. 6-22, в) имеет преимущества перед другими схемами: условия вхождения дуги в решетку здесь более благоприятны.В решетку, выполненную по схемам 1, 2, 3, дуга всегда входит. Внешние силы могут только сократить время остановки дуги у нижнего края пластин. В решетке по схеме 4 опорные точки дуги не могут проникать в область, занятую решеткой, дуга здесь не всегда входит в решетку. Длительная остановка дуги у нижнего края пластин приводит к их выгоранию.Расстояния между пластинами решетки желательно делать весьма малыми. Чем большее число пластин удается поместить на единицу длины, тем компактнее получается дугогасительное устройство. Расстояние между пластинами ограничивается возможностью появления между ними металлического перешейка и их сплавлением. Стальные пластины ближе чем на 2мм располагать нельзя. Второе ограничение сближению пластин ставят условия вхождения дуги в решетку. Чем гуще решетка, тем труднее дуге проникать в нее.Электрическая дуга в решетке из немагнитного материала.Движение электрической дуги в решетке из немагнитного материала и силы, действующие на дугу, схематично изображены на рис. 6-23, а. На возникшую между контактами электрическую дугу действуют электродинамические силы F0 контура тока. Эти силы, а при наличии внешнего магнитного поля и сила взаимодействия тока в дуге с этим полем загоняют дугу в решетку. Силы F0 продолжают существовать в течение всего времени нахождения дуги в решетке. Рис. 6-23. (а) Силы, действующие на дугу в решетке из немагнитного материала Проникая в решетку, дуга разбивается на ряд коротких дуг. Она перестает двигаться как нечто целое. Каждая из коротких дуг приобретает возможность двигаться самостоятельно. Некоторые из них могут продвинуться вперед, некоторые могут отстать. Как только это произойдет (а произойдет это обязательно), в контурах тока по решетке возникнут местные силы F1, стремящиеся задержать движение отставших дуг и ускорить движение дуг, выдвинувшихся вперед. На одних участках дуги будет действовать сила F0 – F1, на других F0 + F1. В результате одни дуги в решетке сильно продвинутся вперед, другие отстанут или даже получат обратное движение.При малых токах силы F0 малы, и при решетке из немагнитного материала дуга не всегда проникает в решетку и будет гореть под решеткой. При больших токах дуга быстро пройдет через решетку и будет гореть над решеткой.Электрическая дуга в решетке из магнитного материала.Движение дуги в решетке из магнитного материала и силы, действующие при этом на дугу, схематично изображены на рис. 6-23,6. Силы F0 и F1 действуют так же, как в решетке из немагнитного материала, к ним добавляются силы взаимодействия тока в дуге с магнитными массами решетки (см. § 2-10). Эти силы (F2) стремятся втянуть дугу в решетку, когда дуга находится под решеткой, и отталкивают ее (F3) от краев пластин (к середине) после вхождения дуги в решетку.Таким образом, электромагнитные силы, возникающие в решетке из магнитного материала (стальной), стремятся выровнять скорости движения отдельных дуг. Эти силы способствуют вхождению дуги в решетку и препятствуют выходу ее из решетки. При малых токах дуга не останавливается под решеткой, как это происходило при решетке из немагнитного материала. Указанные свойства стальных пластин сильно способствовали широкому распространению устройств с дугогасительными решетками. Применение стальных пластин вместо медных или латунных, кроме того, удешевляет конструкцию.  Рис. 6-23. (б) Силы, действующие на дугу в решетке из магнитного материала Особенности движения в решетке дуги переменного тока повышенной частоты.При переменном, токе в пластинах решетки наводятся вихревые токи. Взаимодействие магнитного поля вихревых токов с током дуги приводит к возникновению электромагнитных сил F’2 и F'3, направленных противоположно рассмотренным выше силам F2 и F3. При промышленной частоте силы F'2 и F'3 малы и ими можно пренебречь. При повышенной частоте значение этих сил возрастает. При определенных условиях они могут превосходить силы F2 и F3 существенно изменять характер движения дуги. Вместо того чтобы притягиваться к решетке, как это происходит при частоте 50 Гц (рис. 6-24, а), дуга будет отталкиваться (рис. 6-24, б). Траектория дуги будет направлена не от края к центру, как при 50 Гц, а от центра к краю (А и В — начальные точки траектории дуги). Рис. 6-24. Силы, действующие на дугу в решетке при промышленной (а) и повышенной(б) частоте.Кривые F2 – F'2 = f (f) (данные О. Б. Брона) относятся к току I = 1000 А; а – 0,2 см; μ = 10Характер зависимости сил F2 – F'2, действующих на дугу при вхождении в стальную и латунную решетки, от частоты переменного тока показан на рис. 6-24, в. В латунной решетке силы F2 отсутствуют и наведенные вихревые токи всегда отталкивают дугу от решетки (кривая 1). В стальной решетке силы F'2 начинают превосходить силы F2 при повышенных частотах (кривая 2).25. Электромагнит постоянного тока. Закон изменения тока при включении и отключении.На практике, существуют электромагниты постоянного тока с магнитопроводящим корпусом, имеющем фланцы. В корпусе устанавливается катушка, внутри которой размещаются два якоря. Якорные полюса имеют форму усеченного конуса, позволяющую им взаимодействовать между собой. От катушки и фланцев якоря отделяются. Они оборудованы тягами, имеющими на концах шаровые соединения, обеспечивающие связь с внешними нагрузками. В дополнение ко всему, электромагнит имеет два ограничителя, расположенные на якорях. Эти ограничители обеспечивают соприкосновение якорей между собой в определенной точке, при их движении навстречу друг другу. Дополнительное отделение якорей от катушки и фланцев производится при помощи специальных гильз, изготовленных из немагнитных материалов.В большинстве конструкций совпадение якорей по осям обеспечивается с помощью центрирующего узла, представляющего собой вал из немагнитных материалов. Один конец данного вала жестко закрепляется в осевом отверстии первого якоря и имеет возможность перемещаться вдоль. Другой конец вала устанавливается в осевое отверстие второго якоря с применением подшипников скольжения. Данная конструкция недостаточно надежна, поскольку существует возможность заклинивания свободного конца вала из-за попадания посторонних предметов. Эту проблему решают электромагниты постоянного тока, применяемые в центрирующем узле и обеспечивающие надежную работу вала при заклинивании одного из его концов.При выборе между электромагнитами на постоянном или переменном токе следует учитывать следующие особенности:Сила тяги. При одинаковом сечении полюсов средняя величина силы тяги в ЭМ на переменном токе (“ЭМ тока”) будет вдвое меньше, чем в аналогичном на постоянном токе. То есть железо более эффективно используется в ЭМ на постоянном токе (“ЭМ = тока”)Вес. Если же заданными константами являются сила тяги и ход якоря, то для получения электромагнита переменного тока потребуется вдвое больше железа и размеров, чем для ЭМ постоянного токаРеактивная мощность. Если необходимо уменьшить потребляемую мощность “ЭМ = тока”, то достаточно увеличить его размеры. В случае же с “ЭМ тока” потребляемая при пуске реактивная мощность не может быть уменьшена путем увеличения размеров ЭМВихревые токи. В случае с “ЭМ тока” магнитопроводы выполняют шихтованными и разрезными для уменьшения влияния вихревых токов. Само же наличие потерь на вихревые токи и перемагничивание вызывает увеличение потребления электроэнергии и лишний нагрев. В случае же с “ЭМ = тока” данный пункт отсутствуетБыстродействие. Если взять ЭМ постоянного и переменного тока, то вторые будут более быстродействующие. Однако для “ЭМ = тока” внедряют специальные меры, которые могут сделать их более быстродействующими. При этом “ЭМ = тока” будут потреблять меньше энергииОднако, в промышленности, вышеописанные недостатки “ЭМ

 (2-62)

Проекция силы на ось х всегда направлена в одну сторону. 3нак ± в уравнении (2-62) означает, что для 2ωt >180° следует брать знак минус. Изменение силы во времени не связано с изменением знака.

Каждый из двух других проводников испытывает такие же силы, но с соответствующим сдвигом во времени и пространстве.

С учетом ударного тока максимум силы получается при условии φ = 0, и сила меняете» по закону

 

 (2-63)

Знак минус следует брать для всех отрицательных значений sin  .

Направление и значение силы для любого момента времени определятся вектором ОА, скользящим по кривой рис. 2-11, б и отложенным под углом ωt/2 к оси ординат.



Рис. 2-11. Электродинамические силы при трехфазном переменном токе (проводники расположены треугольником)

В трехфазной сети могут иметь место однофазные, двухфазные и трехфазные короткие замыкания, но так как токоведущие части должны противостоять электродинамическим силам при любом виде короткого замыкания, то, следовательно, расчет надо вести на тот вид короткого замыкания, при котором силы получаются большими.

При двухфазном коротком замыкании электродинамические силы получаются большими, чем при трехфазном, если предположить, что ударный ток в обоих случаях одинаков. Практически ударный ток при двухфазном коротком замыкании меньше, чем при трехфазном. Поэтому расчет токов короткого замыкания рекомендуется вести всегда на случай трехфазного короткого замыкания.

Расчет ведется на максимальное усилие, получаемое при ударном токе. Однако, учитывая, что сила переменна и ее максимум существует очень короткое время, для допустимых напряжений в материале берут большие значения, чем при постоянно действующей силе.

  1. Вывод переходного процесса при коротком замыкании в сети переменного тока

Рассмотрим процесс короткого замыкания. Для понимания этого процесса необходимо знать закон коммутации: в цепях, имеющих индук­тивности и емкости, мгновенные значения тока i напряжения и ЭДС е, магнитного потока Ф и электрического заряда Q не могут в момент коммутации мгновенно изменить свои значения. 
И для того, чтобы в цепи был обеспечен непрерывный переход из одного состояния в другое (в нашем случае из нормального режима в режим короткого замыкания), в момент коммутации в цепи появляются свободные ток, напряжение, ЭДС, магнитный поток, заряд, которые обеспечиваются за счет изменения магнитных потоков в индуктивностях и заряда в емкостях. На рисунке 5.8 приведены расчетная схема короткого замыкания и кривая изменения тока в цепи, полученная при помощи осциллографа (сплошная линия). Пунктиром показано, как можно раз­ложить ту кривую на две более простые, поддающиеся детальному анализу. Это, во-первых, кривая iпр принудительного (периодического) тока, который устанавливается через 2...4 с (с учетом нагрева элемен­тов цепи) после момента воз никновения короткого замыкания, и, во-вторых, кривая iсв свободного (апериодического) тока, обусловленная наличием в цепи магнитных полей и их перераспределением в первые 2...4 с после момента короткого замыкания.

 

Рисунок - Изменение тока короткого замыкания.

Действующее значение принудительного тока



где U - напряжение на зажимах источника; Z - полное сопротивление цепи.

Амплитуда тока



Мгновенное значение свободного тока для любого момента времени t



где Iтсв - начальное значение свободного тока, равное в наиболее тяжелом случае амплитуде Iтпр -тока короткого замыкания; 

Т= L / r Х / (ωr) - постоянная времени экспо­ненциальной кривой, описывающей характер изменения свободного тока; L - индуктив­ность цепи; r - активное сопротивление цепи.

Наибольшее мгновенное значение тока короткого замыкания воз­никает через полпериода (через 0,01 с) после момента замыкания, то есть в самом тяжелом случае, когда момент замыкания совпал с максимальной амплитудой периодического принудительного тока. Этот мгновенный максимальный ток называется ударным, и он составляет




где ky —коэффициент ударного тока, показывающий, во сколько раз ударный ток больше максимального значения периодической — принудительной составляющей тока короткого замыкания.

Теоретически постоянная времени Т может меняться от 0 при = 0 до бесконечности при r = 0. В этих случаях краевые значения ударного коэффициента составят соответственно 1 и 2. На практике максималь­ное значение ky = 1,8. При коротких замыканиях в сетях 10 кВ и 0,38 кВ ky = 1.

  1. Электродинамическая устойчивость аппаратов, механический резонанс. Проверка электродинамической стойкости аппаратов и проводников при КЗ.

Электродинамические силы, возникающие в токоведущих частях аппаратов, стремятся деформировать как сами проводники, так и изоляторы, с помощью которых эти проводники укреплены к заземленным частям аппарата.

Электродинамической устойчивостью аппарата называется его способность противостоять силам, возникающим при протекании токов короткого замыкания.

Эта устойчивость может выражаться либо непосредственно амплитудным значением тока £дин, при котором механические напряжения в деталях аппарата не выходят за пределы допустимых величин, либо кратностью этого тока относительно амплитуды номинального тока.

Как показывают наблюдения, чем выше температура, воздействию которой подвергаются изоляционные материалы, входящие в конструкции аппаратов, тем быстрее ухудшаются их механические и электрические качества. Ухудшение электрических и механических свойств изоляционных материалов приводит к нарушению нормальной работы аппарата.

Естественно, что изоляционные материалы обладают разной стойкостью в отношении воздействия температур. Кроме того, в различных условиях степень воздействия температуры на изоляционные материалы меняется. Так, например, воздействие температуры на изоляцию проводников катушек, пропитанных лаком, значительно слабее, чем непропитанных, и старение изоляции в них соответственно будет протекать медленнее.

В настоящее время в соответствии с ГОСТ 8865—58 и нормами МЭК (Международная электротехническая комиссия) изоляционные материалы разбиты по нагревостойкости на семь классов Y, А, Е, В, F, Н, С. В ГОСТах обычно наряду с допустимой температурой часто указывается допустимое превышение температуры аппарата над температурой окружающего воздуха, определяемое как разность допустимой температуры и температуры окружающего воздуха. При этом температура окружающего воздуха чаще всего принимается 35 или 40° С.


В настоящее время во многих ГОСТах на электрические аппараты приведенная классификация изоляционных материалов пока не нашла отражения. Так, например, в ГОСТ 8024—56 «Аппараты переменного тока высокого напряжения» в зависимости от нагрева при длительной работе все изоляционные материалы разделяются на классы О, А, В, С снаибольшей температурой нагрева только 110° С.

Для трансформаторного масла согласно ГОСТ 8024—56 допускается превышение температуры 40° С, если масло используется в качестве дугогасящей среды, и 55° С — для случаев, когда масло используется только как изолирующая среда.

Применительно к аппаратам низкого напряжения (до 1000 В)разработан ГОСТ 12434—66, в котором электрические аппараты разделяются на аппараты распределения энергии и аппараты управления приемниками энергии.

К аппаратам распределения энергии относятся автоматические выключатели, переключатели, плавкие предохранители, контактные разъемы.

К аппаратам управления — приемникам энергии относятся контакторы, реле управления и промышленной автоматики, командоконтроллеры, кнопки управления, конечные и путевые выключатели, резисторы, реостаты, электромагниты, контроллеры, ручные и электромагнитные пускатели.

  1. Нагрев и охлаждение, однородного проводника при продолжительном режиме работы.

При изучении данного вопроса необходимо знать следующие параметры:

- P dt – количество теплоты, выделяемого в проводнике;

- G – масса проводника;

- F – площадь поверхности излучения проводника;

- с – удельная теплоемкость проводника;

- kт – коэффициент теплоотдачи;

- τ – превышение температуры проводника по отношению к окружающей среде.

Для любогопроводника при нагреве (t = 0) справедливоуравнение теплового баланса
P dt = G c dt + F kтτ dt

Количество теплоты выделяемое в проводнике равно количеству теплоты, поглащаемому проводником, плюс количество теплоты излучаемому с поверхности проводника.

Для установившегося режима работы проводника (t = ) справедливо уравнение теплового равновесия:

P dt = F kт τ dt

Количество теплоты, выделяемое в проводнике равно количеству теплоты излучаемому с поверхности проводника.

При отключении работающего проводника наступает его охлаждение. Уравнение теплового баланса при охлаждении имеет вид:


0 = G c dt + F kт τ dt

Продолжительным (S1) называется режим работы, при котором нагрев продолжается столько времени, что температура проводника успевает достичь установившихся значений. Уравнение нагрева проводника при продолжительном режиме работы с холодного состояния имеет вид:

τ = τ уст (1-е -t / Т)

Уравнение нагрева проводника при продолжительном режиме работы с некоторой температуры имеет вид:

τ = τ уст (1 – е -t / Т) + τ 0 е -t / Т