Файл: Учебное пособие для студентов Авторы А. Н. Вальвачев, К. А. Сурков, Д. А. Сурков, Ю. М. Четырько Содержание Содержание 1.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.05.2024

Просмотров: 124

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Таблица 2.1. Целочисленные типы данных

* Примечание: количество байт памяти, требуемых для хранения переменных обобщенных типов данных, приведено для 32-разрядных процессоров семейства x86.

Пример описания целочисленных данных:

var

X, Y: Integer;

TextLength: Cardinal;

FileSize: Longint;

Позволим себе дать небольшой совет. При программировании алгоритмов предпочтение следует отдавать обобщенным типам даных, поскольку они позволяют достичь максимальной производительности программ при переходе на другие модели компьютеров (например, при переходе на компьютеры, построенные на основе новых 64-разрядных процессоров). Переменные обобщенных типов данных могут храниться в памяти по-разному в зависимости от конкретной модели компьютера, и для работы с ними компилятор может генерировать наиболее оптимальный код. Однако при использовании переменных обобщенных типов данных ни в коем случае нельзя полагаться на формат их хранения в памяти, в частности на размер.


2.3.2. Вещественные типы данных

Вещественные типы данных применяются для описания вещественных данных с плавающей или с фиксированной точкой (таблица 2.2).

Тип данных

Диапазон значений

Мантисса

Объем памяти (байт)

Real

5.0*10–324..1.7*10308

15–16

8*

Real48

2.9*10–39..1.7*1038

11–12

6

Single

1.5*10–45..3.4*1038

7–8

4

Double

5.0*10–324..1.7*10308

15–16

8

Extended

3.4*10–4932..1.1*104932

19–20

10

Comp

–9223372036854775808 .. 9223372036854775807

19–20

8

Currency

–922337203685477.5808 .. 922337203685477.5807

19–20

8

Таблица 2.2. Вещественные типы данных

* Примечание: количество байт памяти, требуемых для хранения переменных обобщенных типов данных, приведено для 32-разрядных процессоров семейства x86.

Пример описания вещественных данных:

var

X, Y: Double;

Z: Extended;

Необходимо отметить, что тип Real является обобщенным типом данных и по отношению к нему справедливо все то, что было сказано о типах Integer и Cardinal.

2.3.3. Символьные типы данных

Символьные типы применяются для описания данных, значением которых является буква, цифра, знак препинания и другие символы. Существуют два фундаментальных символьных типа данных: AnsiChar и WideChar (таблица 2.3). Они соответствуют двум различным системам кодировки символов. Данные типа AnsiChar занимают один байт памяти и кодируют один из 256 возможных символов расширенной кодовой таблицы ANSI, в то время как данные типа WideChar занимают два байта памяти и кодируют один из 65536 символов кодовой таблицы Unicode. Кодовая таблица Unicode — это стандарт двухбайтовой кодировки символов. Первые 256 символов таблицы Unicode соответствуют таблице ANSI, поэтому тип данных AnsiChar можно рассматривать как подмножество WideChar.


Тип данных

Диапазон значений

Объем памяти (байт)

Фундаментальные типы данных

AnsiChar

Extended ANSI character set

1

WideChar

Unicode character set

2

Обобщенный тип данных

Char

Same as AnsiChar's range

1*

Таблица 2.3. Символьные типы данных

* Примечание: Тип данных Char является обобщенным и соответствует типу AnsiChar. Однако следует помнить, что в будущем тип данных Char может стать эквивалентным типу данных WideChar, поэтому не следует полагаться на то, что символ занимает в памяти один байт.

Пример описания переменной символьного типа:

var

Symbol: Char;

В программе значения переменных и констант символьных типов заключаются в апострофы (не путать с кавычками!), например:

Symbol := 'A'; // Переменной Symbol присваивается буква A

2.3.4. Булевские типы данных

Булевские типы данных названы так в честь Георга Буля (George Boole), одного из авторов формальной логики. Диапазон значений данных булевских типов представлен двумя предопределенными константами: True — истина и False — ложь (таблица 2.4).

Тип данных

Диапазон значений

Объем памяти (байт)

Boolean

False (0), True (1)

1

ByteBool

False (0), True (не равно 0)

1

WordBool

False (0), True (не равно 0)

2

LongBool

False (0), True (не равно 0)

4

Таблица 2.4. Булевские типы данных

Пример описания булевских данных:

var

Flag: Boolean;

WordFlag: WordBool;

LongFlag: LongBool;

Булевские типы данных широко применяются в логических выражениях и в выражениях отношения. Переменные типа Boolean используются для хранения результатов логических выражений и могут принимать только два значения: False и True (стандартные идентификаторы). Булевские типы данных ByteBool, WordBool и LongBool введены в язык Delphi специально для совместимости с другими языками, в частности с языками C и C++. Все булевские типы данных совместимы друг с другом и могут одновременно использоваться в одном выражении.


2.3.5. Определение новых типов данных

Кроме стандартных типов данных язык Delphi поддерживает типы, определенные программистом. Новый тип данных определяется с помощью зарезервированного слова type, за которым следует идентификатор типа, знак равенства и описание. Описание завершается точкой с запятой. Например, можно определить тип, тождественный существующему типу:

type

TUnicode = WideChar; // TUnicode тождественен типу WideChar

TFloat = Double; // TFloat тождественен типу Double

Нетрудно заметить, что идентификаторы новых типов в примере начинаются заглавной буквой T (первая буква слова type). Такое соглашение о типах программиста принято разработчиками среды Delphi, но оно не является строгим. Тем не менее, мы рекомендуем его придерживаться, так как оно способствует более легкому восприятию исходного текста программы.

Синтаксическая конструкция type позволяет создавать новые порядковые типы: перечисляемые типы и интервальные типы.

2.3.6. Перечисляемые типы данных

Перечисляемый тип данных представляет собой список значений, которые может принимать переменная этого типа. Каждому значению поставлен в соответствие идентификатор, используемый в программе для указания этого значения.

type

TDirection = (North, South, East, West);

На базе типа TDirection можно объявить переменную Direction и присвоить ей значение:

var

Direction: TDirection;

begin

Direction := North;

end.

На самом деле за идентификаторами значений перечисляемого типа стоят целочисленные константы. По умолчанию, первая константа равна 0, вторая — 1 и т.д. Существует возможность явно назначить значения идентификаторам:

type

TSizeUnit = (Byte = 1, Kilobyte = 1024 * Byte, Megabyte = Kilobyte * 1024,

Gigabyte = Megabyte * 1024);

2.3.7. Интервальные типы данных

Интервальный тип данных задается двумя константами, ограничивающими диапазон значений для переменных данного типа. Обе константы должны принадлежать одному из стандартных порядковых типов (но не вещественному и не строковому). Значение первой константы должно быть обязательно меньше значения второй. Например, определим интервальный тип TDigit:

type

TDigit = 0..9;

var

Digit: TDigit;

begin

Digit := 5;

Digit := 10; // Ошибка! Выход за границы диапазона

end.

В операциях с переменными интервального типа данных компилятор генерирует код проверки на принадлежность диапазону
, поэтому последний оператор вызовет ошибку. Это очень удобно при отладке, но иногда отрицательно сказывается на скорости работы программы. Для отключения контроля диапазона откройте окно Project Options, выберите страницу Compiler и снимите пометку пункта Range Checking.

Данные перечисляемых и интервальных типов занимают в памяти 1, 2 или 4 байта в зависимости от диапазона значений типа. Например, если диапазон значений не превышает 256, то элемент данных занимает один байт памяти.

2.3.8. Временной тип данных

Для представления значений даты и времени в среде Delphi существует тип TDateTime. Он объявлен тождественным типу Double. Целая часть элемента данных типа TDateTime соответствует количеству дней, прошедших с полночи 30 декабря 1899 года. Дробная часть элемента данных типа TDateTime соответствует времени дня. Следующие примеры поясняют сказанное:

Значение

Дата

Время

0

30.12.1899

00:00:00

0.5

30.12.1899

12:00:00

1.5

31.12.1899

12:00:00

–1.25

29.12.1899

06:00:00

35431.0

1.1.1997

00:00:00

2.3.9. Типы данных со словом type

Если в программе создается новый тип данных, тождественный уже существующему типу данных, то компилятор не делает никаких различий между ними (ни на этапе компиляции, ни на этапе исполнения программы). По сути, создается не новый тип данных, а псевдоним для уже существующего типа данных.

type

TFileName = string;

В приведенном выше примере тип данных TFileName является псевдонимом для стандартного типа данных string.

Для того чтобы создать действительно новый тип данных, обладающий свойствами уже существующего типа данных, но не тождественный ему, необходимо использовать зарезервированное слово type:

type

TFileName = type string;

Различие между таким способом создания типа и обычным (без слова type) проявится при изучении массивов, записей и классов. Чтобы подготовленный читатель уже сейчас понял, в чем оно состоит, забежим вперед и приведем поясняющий пример (новичкам советуем пропустить пример и вернуться к нему позже после изучения массивов):