Файл: Учебное пособие Пермь, 2011 удк 621. 791 Рецензенты др техн наук, проф. Ю. Д. Щицын.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.05.2024

Просмотров: 116

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


После закалки (при охлаждении в воде) углеродистой стали (0,4 % С) и отпуске при 300 С в = 1300 МПа,  = 12 %, = 35 %, а при отпуске 600 С в = 620 МПа,  = 22 %,  = 55 %.
4. 6. Химико-термическая обработка сталей
Химико-термической обработкой называют технологический процесс, заключающийся в диффузионном насыщении поверхностного слоя деталей различными элементами с целью изменения его состава, структуры и свойств.

Химико-термическую обработку применяют для повышения твердости, износостойкости, сопротивления усталости и контактной выносливости, а также для защиты от электрохимической и газовой коррозии.

Проведение любой химико-термической обработки деталей включает следующие стадии:

1) диссоциацию химических соединений, в состав которых входит насыщающий элемент, с образованием активных атомов диффундирующего элемента;

2) адсорбцию диффундирующих элементов на поверхности металла, в результате чего тончайший поверхностный слой насыщается диффузионно-активным элементом;

3) собственно диффузию  проникновение элемента в глубь металла.

В результате образуется диффузионный слой, на поверхности которого концентрация легирующего элемента максимальна, а по мере удаления от нее  снижается.

4.6.1. Цементация сталей

Цементацией называется процесс насыщения поверхности изделия углеродом. Цель цементации  придание поверхности твердости при сохранении мягкой сердцевины. Обычно цементации подвергают детали из низкоуглеродистой стали, содержащей не более 0,25 % С (сталь марок 10, 15, 20, А12, 15Х, 25ХГМ и др.), работающие в условиях переменных ударных нагрузок и подвергающиеся износу, например зубья автомобильных зубчатых колес, шестерни, втулки, поршневые пальцы и т.д. Температура цементации 900…970 С. Толщина цементованного слоя от 0,1 до 3…4 мм.

В поверхностном слое содержание углерода составляет 0,8…1,0 %. Цементацию проводят в твердых, жидких и газообразных средах, называемых карбюризаторами. В качестве твердого карбюризатора применяют древесный уголь в смеси с другими компонентами.

Газовую цементацию проводят в атмосфере метана, керосина, бензола и др. Применяют для массового производства мелких деталей. Жидкие карбюризаторы (смесь цианистого калия с бурой, содой и другими веществами) применяют в тех случаях, когда нужно получить тонкий цементованный слой с высоким содержанием углерода.


Для придания твердости наружному слою производят закалку с температур 820…850 С и низкий отпуск при 150…170 С. После термической обработки твердость поверхностного слоя 60…64 HRC. Чтобы получить заданную структуру и свойства материала сердцевины изделия, проводят нормализацию (880…900 С) и для поверхностного слоя  закалку (760…780 С) с низким отпуском.

Газовая цементация наиболее широко применяется в массовом производстве. Основной реакцией, обеспечивающей выделение свободного атомарного углерода, является диссоциация метана и оксида углерода по реакции:

СН4  2Н2 + Сат,

2СО  СО2 + Сат.

В качестве карбюризатора используют разбавленный природный газ (метан), контролируемые атмосферы, получаемые в специальных генераторах, а также пары жидких углеводородов.

При газовой цементации можно получить заданную концентрацию углерода в слое, сократить длительность процесса, обеспечить возможность полной механизации и автоматизации процесса, проводить закалку непосредственно от температуры цементации.

Содержание углерода в поверхностном слое при данной температуре обычно составляет 1,1…1,2 % и быстро убывает по толщине детали, поэтому после охлаждения структура различна по глубине и твердости.

После закалки цементованные детали во всех случаях подвергают низкому отпуску при температуре 160…180 С для уменьшения закалочных напряжений и повышения сопротивления хрупкому разрушению.

4.6.2. Азотирование стали

Азотированием называют процесс насыщения стали азотом. Цель азотирования  придать поверхности высокую твердость, износостойкость, устойчивость против коррозии и усталостную прочность. Процесс заключается в воздействии на сталь аммиака (газовое азотирование) при температуре 500…600 С. Образовавшийся свободный азот, находящийся в атомарном состоянии, воздействует на сталь и образует с элементами, входящими в ее состав (Cr, Fe, Al и др.), различные нитриды, обладающие высокой твердостью (до 70 HRC). Азотированный слой сохраняет свою твердость до 400…600 С, в то время как твердость цементированного слоя с мартенситной структурой сохраняется лишь до 200…250 С. Толщина азотированного слоя 0,25…0,75 мм. Азотированию подвергают легированные стали, например 35ХМЮА, 18ХГТ, 40ХНМА, 38Х2МЮА и др.

Перед азотированием детали подвергают закалке и высокому отпуску (600…675 С) с целью улучшения их механических свойств. Для ускорения процесса сначала производят азотирование при 500…520 С, а затем при 560…600 С. Повышение температуры ускоряет процесс диффузии и почти не сказывается на твердости поверхностного слоя.



Достоинством процесса азотирования по сравнению с цементацией является незначительное изменение размеров и отсутствие коробления вследствие низкой температуры нагрева. Азотированные поверхности имеют большую химическую стойкость на воздухе, а также в пресной и соленой воде.

Азотирование в жидких средах производится при температуре 570 С в расплавленных цианистых солях в течение 0,5…3 ч. Общая толщина слоя 150…500 мкм, твердость HV 600…11000. Жидкое азотирование повышает сопротивление износу и предел выносливости. Недостатком его является токсичность и высокая стоимость процесса. Его используют для обработки деталей автомобиля (коленчатые валы, шестерни и т.д.), а также штампов, пресс-форм и др.

4.6.3. Цианирование сталей
Цианированием называют насыщение поверхности изделий одновременно углеродом и азотом в расплавленных цианистых слоях при температуре 820…950 С.

При низкотемпературном цианировании детали нагревают до 820…860 С в расплавленных солях, содержащих NaCN, в течение 0,5…1,5 ч, при этом получают слой толщиной 150…350 мкм. Затем производят закалку непосредственно с температуры цианирования с последующим низкотемпературным отпуском (180…200 С). Твердость после термической обработки составляет 58…62 HRC. Такой обработке обычно подвергают детали из среднеуглеродистых сталей и инструменты из быстрорежущих сталей.

Для получения более толстого слоя (500…2000 мкм) применяют высокотемпературное цианирование при 930…950 С со временем выдержки 1,5…6 ч. После такой обработки детали охлаждают на воздухе, производят закалку и низкотемпературный отпуск.

4.6.4. Нитроцементация

Нитроцементация представляет собой процесс насыщения поверхностного слоя одновременно углеродом и азотом в газовой среде азота 40 %, водорода 40 % и оксида углерода 20 % при температуре 850…870 С в течение 4…10 ч. Назначение  повышение износостойкости, предела выносливости при изгибе, твердости и коррозионной стойкости. После закалки и низкого отпуска (160…180 С) твердость поверхностного слоя составляет НRC 58…60 и толщина слоя 0,2…0,8 мм; они зависят от температуры и времени выдержки.

Нитроцементацию широко используют в автомобильном и автотракторном производстве. Нитроцементация имеет определенные преимущества по сравнению с газовой цементацией  более низкая температура процесса, снижение деформации и коробления и др.

4.6.5. Борирование

Борирование заключается в насыщении поверхностного слоя изделий из низко- и среднеуглеродистых сталей 20, 40, 40Х, 30ХГС и других бором при нагревании в боросодержащей среде. Борирование применяют для повышения твердости, износостойкости, коррозионной стойкости и окалиностойкости тяжело нагруженных деталей (нефтяное оборудование, штампы, пресс-формы и др.). Процесс проводится при температуре 850…950 С в течение 2…6 ч. Поверхностный слой состоит из боридов, толщина слоя 0,1…0,2 мм твердость его 1800…2000 HV.

4.6.6. Диффузионная металлизация
Диффузионной металлизацией называется процесс диффузионного насыщения поверхностных слоев стали различными металлами. Детали, поверхность которых насыщена алюминием, хромом, кремнием, бором, приобретают ряд ценных свойств, например жаростойкость, коррозионную стойкость, повышенную износостойкость и твердость.

При алитировании, т.е. насыщении алюминием, которое обычно проводится в порошкообразных смесях или расплавленном алюминии, детали приобретают повышенную коррозионную стойкость благодаря образованию плотной пленки Al2O3, предохраняющей металл от окисления. Толщина слоя составляет 0,2…0,5 мм.

Силицирование, т.е. насыщение кремнием, придает высокую кислотоупорность в соляной, серной и азотной кислотах, жаростойкость, износостойкость и применяется для деталей, используемых в химической и нефтяной промышленности, для вкладышей подшипников, роторов водяных насосов, трубопроводной арматуры, труб судовых механизмов. Толщина слоя в пределах 0,3…1,0 мм.

Хромирование  процесс насыщения поверхностного слоя стали хромом, при этом повышается коррозионная стойкость, твердость и износостойкость. Наибольшее применение получило хромирование в порошкообразных смесях феррохрома или хрома, хлористого аммония и оксида алюминия. Хромируют обычно низкоуглеродистые стали: структура слоя состоит из твердого раствора хрома в -железе и содержит 30…40 % хрома. При хромировании средне- и высокоуглеродистой стали получаемый слой состоит из карбидов хрома (Cr, Fe)7C3 и др. Хромированию подвергают клапаны компрессоров, матрицы штампов для холодной высадки и др. При хромировании обеспечивается высокая твердость, износостойкость, стойкость против газовой коррозии до 800 С, а также стойкость против коррозии в воде, морской воде и кислотах. Толщина слоя составляет до 0,2 мм.

Цинкование наиболее широко используют в технике. На долю цинковых покрытий приходится около 60 % от общей поверхности металлических покрытий. Цинковые покрытия хорошо защищают железо и его сплавы от коррозии на воздухе и в воде. Толщина цинкового покрытия 6…36 мкм зависит от условий эксплуатации изделий. Оцинкованные листы и полосы применяются в жилищном строительстве (кровля, водосточные трубы), для изготовления емкостей, в автомобильном и железнодорожном транспорте и др.

4.7. Термомеханическая обработка стали
Термомеханическая обработка ТМО  это совокупность операций пластической деформации и термической обработки, совмещенных в одном технологическом процессе, который включает нагрев, пластическое деформирование и охлаждение. Термомеханическое воздействие приводит к получению структурного состояния, которое обеспечивает повышение механических свойств.

Оптимальное сочетание пластической деформации и фазовых превращений приводит к повышению плотности и более правильному расположению несовершенств кристаллической решетки металла.

Р
азличают два основных вида ТМО: высокотемпературную термомеханическую обработку (ВТМО) (рис. 16, а) и низкотемпературную термомеханическую обработку (НТМО) (рис. 16, б).

При ВТМО деформация производится при температуре выше температуры рекристаллизации (при этом сталь имеет аустенитную структуру). Степень деформации 20…30 %. Во избежание рекристаллизации вслед за деформацией незамедлительно производится закалка (1150 С) с последующим низкотемпературным отпуском (100…200 С).

НТМО применяется только для легированных сталей, обладающих значительной устойчивостью переохлажденного аустенита. При НТМО деформация производится ниже температуры рекристаллизации (400…600 С), степень деформации 75…95 %. Закалку производят сразу после деформации, а затем следует низкотемпературный отпуск (100…200 С).

Недостатком НТМО является, во-первых, необходимость использования мощного оборудования для деформирования, во-вторых, стали после НТМО имеют невысокую сопротивляемость хрупкому разрушению.

Если при обычной термической обработке сталь имеет временное сопротивление при растяжении 2000…2200 МПа, то после ТМО оно достигает 2200…3000 МПа, при этом пластичность увеличивается в два раза (удлинение с 3…4 % повышается до 6…8 %).

Получаемое в процессе горячей деформации упрочнение тут же полностью или частично снимается за счет рекристаллизации, что снижает сопротивление деформации и повышает пластичность металлов.
4. 8. Влияние нагрева на структуру и свойства

деформированного металла

Как уже отмечалось ранее на детали работающих машин воздействуют внешние силы или нагрузки Р, вызывающие в материале сначала упругие, а затем пластические деформации.