Файл: Зубов В.А. Методы измерения характеристик лазерного излучения.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.06.2024
Просмотров: 149
Скачиваний: 2
интенсивности. При фотоэлектрической регистрации сле дует работать с непосредственно зарегистрированной кривой распределения интенсивности. Следует проделать графи ческое разделение контура на составляющие (рис. 33). Можно принять, что линия большей интенсивности мало искажена, ее можно зеркально отразить. Получающийся
Рис. 32. Соотношение фурье-транс- |
Рис. 33. Графическое раз" |
|
форманты сигнала Ф( ш), аппаратной |
деление контура на состав' |
|
функции Л( и) и |
средней спектраль- |
лягощпе. |
ной плотности |
флуктуаций Чг( ш) |
|
в процессе |
редукции. |
|
остаток дает более слабую компоненту. Реально может оказаться, что интенсивная компонента искажена, тогда проделанное разбиение следует принять за первое прибли жение и повторить процедуру с учетом поправки за счет слабой компоненты. Следует отметить, что в результате такой обработки выявляется, что истинная относительная интенсивность слабой компоненты меньше, чем наблюда ется в суммарном контуре, а истинное расстояние между линиями — несколько больше.
Г л а в а 3
ИЗМЕРЕНИЕ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ИЗЛУЧЕНИЯ ОКГ
Измерение временных характеристик имеет наиболь шее значение для квантовых генераторов, работающих в импульсном режиме. В этом случае существенно изме рение длительности импульсов и изучение развития во времени импульса излучения. Представляет интерес изу чение процессов взаимодействия излучения с веществом и их развитие во времени.
Наибольшие трудности встречаются при измерении времен, меньших 10_s сек. Именно эта область времен будет в первую очередь рассматриваться. Оценка предель ного временного разрешения, к которому следует стремить ся, дает следующее. Если принять длину волны излучения Х=1 мкм, то время распространения света на расстояние по рядка длины волны t —У с~ 3 -ІО-15 сек. За предельное время разрешения следует принять время, соответствую щее распространению света на расстояние нескольких длин волн, т. е. ~10-14 сек [129].
§ 1. Временное разрешение оптической системы
Оптические системы используются во всех измеритель ных схемах, поэтому соответствующие оценки предельных времен разрешения для них имеют общее значение. Вся кая оптическая система, например, изображающая объект в плоскости приемного устройства, из-за аберраций вно
сит ошибку в измеряемый |
интервал времени, по |
скольку появляется разброс |
длин оптических путей |
от точки объекта до соответствующей точки изображения. Рассмотрим, например, сферическую аберрацию на зеркале с радиусом кривизныR (рис. 34, а) [129]. Два луча, параллельно падающие на зеркало, — луч 1 на расстоянии h от оси системы, луч 2 по оси, — одновременно при ходят в плоскость AD. От этой плоскости до точки В луч 1
121
проходит расстояние AB, луч 2 — расстояние DA' + -|-А 'В . Для разпости оптических путей получается выраже ние
Дz = AB — {DA1+ А’В) ~
Рассмотрим сферическую аберрацию линзы. Для упро щения расчетов будем рассматривать плоско-выпуклую линзу, имеющую коэффициент преломления стекла п,
Рпс. 34 .-Сферическая аберрация а) зеркала, б) линзы.
радиус кривизны R и диаметр 2h (рис. 34, б). Пусть на линзу падает параллельный пучок лучей. Будем рассмат ривать два луча: крайний луч 1, идущий на расстоянии h от оси и отклоняющийся линзой на угол а, и центральный луч 2. К плоской входной поверхности линзы AD оба эти луча проходят одновременно. До точки пересечения В луч 1 проходит расстояние AB, луч 2 — расстояние DA’A- ~\-А’В или, точнее, оптический путьЮА'п-А-А’В. Для раз ности оптических путей получаем
bz = {DAln + A'B) — A B ~ - ^ n ( n — l).
Таким образом, и в случае зеркала, и в случае линзы получается некоторый интервал оптических путей, в пре делах которого лучи приходят в определенную плоскость. Этот интервал приблизительно одинаков в случае сфери
122
ческой аберрации для зеркала и для линзы и имеет ве-
личину, A z— Jßß- & соответствии с этим имеется некото
рый интервал времен прихода светового сигнала в выбран ную плоскость. Величина этого временного интервала, или ошибка в измерении временного интервала, составляет
. _ Дz |
}А |
°"і ~~с |
ÄcW • |
Если принять R = 10 см, h= 2 см, то Аtom ~ ІО-13 сек\ если h = 1 см, то
д*о„т'~ 10-14 сек-
Погрешности, связанные с хроматической аберрацией, рассматривать не следует, так как при практической ра боте обычно имеют дело с квазимонохроматическим излу чением, для которого хроматическая аберрация не суще ственна. Ошибки, связанные с другими аберрациями, того же порядка. Таким образом, если необходимо стре миться к получению предельных временных разрешений, следует устранять аберрации путем подбора соответству ющих оптических систем или путем уменьшения действую щей апертуры.
§ 2. Временное разрешение систем с механической схемой развертки
Система с простым механическим затвором не обеспе чивает высокое временное разрешение. Действительно, пусть диаметр светового пучка d ~ 1 мм и время экспо зиции, которое желательно получить, At — ІО-7 сек. Это дает для скорости движения затвора величину ѵ — ~106 см/сек. Материал затвора не выдерживает возникаю щих напряжений, наступает разрушение. Энергия связи атома в материале W ~ 1 эв=1,6-ІО-12 г-см2/сек2. Кине тическая энергия атома должна быть меньше этой величины, чтобы не происходило разрушение, т. е. WK<С W. Это со
ответствует |
V <^\J2W/M и At > d |
Для атома |
с массой JW=5*10-23 г имеем Д і^ 4 - 1 0 -7 |
сек. Реальное |
|
время At ~ |
10-в сек. |
|
Практические системы с механической разверткой в той или иной степени используют принцип оптического ры чага, т. е. развертка изображения осуществляется
123
равномерно вращающимся зеркалом (рис. 35) ИЗО]. В таких системах достигается наилуяшее отношение временного разрешения к механическим напряжениям материалов [129]. На рисунке световой пучок от источника 1 отклоня ется вращающимся с частотой шзеркалом 2, имеющим раз мер 21. Расстояние от центра зеркала до экрана 3 равно L — длине оптического рычага. Общее соотношение Д<мех== =dlv позволяет оценить временное разрешение такой си стемы. В этом выражении d — величина разрешаемого на регистрирующем экране элемента, ѵ — скорость развертки,
АZMex — временное |
разрешение, определяемое |
временем |
|||
|
|
смещения на величину d. |
|||
|
|
В случае лазерного из |
|||
|
2 і |
лучения, |
отличительной |
||
|
чертой которого |
является |
|||
|
|
высокая |
иаправлеипость, |
||
|
|
величина разрешаемого на |
|||
|
|
экране элемента определя |
|||
Рис. 35. Временная |
развертка |
ется главным образом ди |
|||
фракцией на краях зерка |
|||||
сигнала вращающимся |
зеркалом. |
ла, шириной дифракцион ного пятна. Эта величина находится по аналогии с расче том ширины нулевого дифракционного максимума для щели. Условие 1-го минимума 2Zsinw=X дает для малых углов угловое расстояние между двумя 1-ми минимумами 2tp=X/Z, линейное расстояние на экране, или величина раз решаемого элемента, равно d=2yL='kLU. Скорость раз вертки и определяется угловой скоростью вращения ш (ѵ=шЬ). Для временного разрешения системы с механи ческой разверткой получается АZMOX~X/(DZ, или, учитывая, что u)Z= u определяет скорость движения края зеркала, AZ„ex— Таким образом, временное разрешение опре деляется временем, за которое край зеркала должен пройти путь, равный длине волны.
По грубой оценке разрушение зеркала начнется, когда кинетическая энергия атома на краю зеркала станет рав ной энергии связи атома в веществе. Если обозначить массу атома М, а энергию связи — W, то критерий разру шения запишется Ми?12 — W, откуда получается оценка
для скорости движения края зеркала u~\]2W /M и для временного разрешения рассматриваемой системы Д£мех ~
— X\/M/(2W)- Если воспользоваться числовыми значениями; X— 10-і см, М — 5 • ІО“23 г, W ~ 1,6 • ІО-12 г ■см2/см2, то
124
Т а б л и ц а 18
ÜJ о
О 53 |
|
|
|
|
|
|
|
I |
а S |
|
|
|
|
|
|
|
|
|
|
CD |
|
|
|
|
о |
|
оН<u |
|
I |
|
|
|
|
|
|
И g к |
|
|
|
|
|
|
|
|
s § w |
|
О |
|
|
|
|
|
|
ü Q. |
|
|
|
|
|
|
|
|
А« |
|
|
|
|
|
|
|
|
ffl g |
|
|
|
|
|
|
|
|
а |
|
|
|
|
|
|
|
|
И в? Л |
з |
|
|
|
|
|
|
|
йо2 |
* |
|
|
|
|
|
|
|
&3 юй а |
СМ |
О |
Ю |
Ю |
|
|
|
|
о іио«Э 2 |
|
IN ГН N |
|
|
|
|||
о я n W^ |
|
|
|
|
|
|
|
|
О. Е-* ей |
Q |
|
|
|
|
|
|
|
й°й |
& |
|
|
|
|
|
|
|
|
с |
|
|
|
|
|
|
|
« |
|
О |
|
|
|
о |
|
|
д« |
|
о |
|
|
|
|
||
|
Ю |
|
|
со |
|
|
||
о 3; |
|
t>» ю |
, |
|
ю |
|
|
|
о „ |
|
СО |
с— |
1 |
1 |
|
|
|
Аа |
|
1 |
со |
1 |
|
|
||
о Ü |
|
ю |
о |
|
|
00 |
|
|
О § |
|
СО |
ес |
|
|
см |
|
|
« |
|
|
|
|
см |
|
|
|
со |
|
|
|
|
|
|
|
|
|
|
|
|
о |
о |
о о |
о о |
|
|
|
|
|
О 'о |
О Q |
LO Ю |
|
|
|
|
|
|
^ч |
|
ТЧ ^ .тч |
|
|
Ай |
|
|
о |
|
ю |
ю ю |
іо |
|
S3 |
|
|
|
о |
оП |
О см |
|
|
s x |
|
|
^н |
1 |
X |
тн іО |
тч СМ |
|
а „ |
|
|
X |
XX |
XX |
|
||
a з? |
|
|
со |
|
іо |
Ю00 |
ю со |
|
я s |
|
|
|
|
|> |
і>Гсо |
|
|
со ^ , |
|
|
|
|
|
|
||
Л |
|
|
|
|
|
|
|
|
А |
|
|
О |
|
|
|
|
|
|
|
|
|
|
|
о |
|
|
|
|
|
о |
|
|
о |
о |
|
|
|
|
о |
|
щ |
о |
|
|
|
|
|
о |
00 |
|
о |
00 |
|
|
|
|
о |
о |
о |
см |
00 |
|
|
|
|
Ю |
*гЧ |
|
см |
о |
|
|
|
|
о |
1 |
|
1 |
о |
|
|
|
|
•о |
о |
ч< |
ю |
||
|
|
|
о |
о |
о |
о |
||
|
|
|
о |
^ч |
|
«н |
0 5 |
о |
|
|
|
|
ю |
|
со |
|
fc* |
|
|
|
о |
|
о |
|
о |
|
|
|
|
о |
|
|
|
||
|
|
|
о |
о |
о |
|
о |
|
|
|
|
от |
|
о |
|
||
|
|
|
|
|
|
|
о |
о |
|
|
|
|
|
|
|
0 5 |
о |
|
|
о |
о |
|
|
|
о |
о |
|
|
о |
ш |
|
|
|
|
|
|
|
ю |
с- |
|
|
|
о |
|
|
|
t*- |
|
|
|
о |
|
|
|
|
со |
|
|
|
Ю |
|
|
|
|
|
|
|
|
|
со |
|
св |
|
|
|
|
|
|
|
|
м А |
|
|
ѳ |
** |
|
|
|
оа |
В о |
|
гН |
|
со |
|
|||
а «о |
|
*? |
' f |
1 |
||||
& Я |
|
О-і |
к |
0ч |
1 |
а. |
||
А |
|
ѳ |
Ö |
a |
a |
â |
Й |
|
а |
|
ѳ |
а |
М |
со |
е |
ѳ |
|
|
|
а |
|
|
|
|
|
|
И
Я
Н
■О
cd
Ч
ѵо
ѳ
>Э I Он
ѳ
а
зЯ
о
п
о
н
ф
ч
о
я
>©<
cd
Он
ь
л
ч
>>
к
a
I
а,
ѳ
и
:Яо
я
о
cd
Он
>ѳ*
я
о
\о
я
Он
яa
Ё
cd
я
О н
2 ai
125