ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 32
Скачиваний: 0
СОДЕРЖАНИЕ
1.6. Включение малых атс по абонентским линиям: входящий вызов
38 Глава 1________________________————————————
40 Глава 1_______________________________________
42 Глава 2 _________________________________
48 Глава 2_______________________________________
52 Глава 2________________________________________
54 Глава 2 __________________________
56 Глава 2______________________________________
58 Глава 2________________________________________
2.3. Пользовательский доступ isdn
50 Глава 2
Рис. 2.5. Метод «пинг-понг» (полудуплекс) для U-интерфейса
Метод «пинг-понг» требует для своей реализации меньших затрат, чем метод компенсации отраженных эхосигналов, однако имеет недостаток — меньшую зону действия (максимально 2 км). Он используется, в основном, для малых учрежденческих АТС, т.к. для телефонных сетей общего пользования такое расстояние слишком мало.
Существует общее заблуждение относительно режима работы с поочередным переключением направлений связи. Часто считают, что область его возможного применения, ограниченная затуханием линии, ограничена также задержкой распространения сигнала в прямом и обратном направлениях. Посылку пакета данных, передаваемых по линии, можно представить в виде шарика для пинг-понга, которому нужно время (около 5 мкс на километр), чтобы переместиться от одного конца линии к другому. Обычно говорят, что «шарик» должен вернуться, прежде чем можно будет передать следующую посылку данных; т.е. частота посылок ограничена двусторонней задержкой (временем двойного пробега) при передаче. До некоторой степени это можно преодолеть, увеличивая размер «шарика» (помещая больше информации в каждой посылке), но такой подход тоже ограничен, т.к. при этом увеличивается время передачи, поскольку перед передачей посылка должна быть заполнена. Из того, что размер «шарика» и частота его посылки ограничены, можно сделать ошибочное заключение, что и реальная производительность метода тоже ограничена.
Цифровые абонентские линии 51
Это заблуждение вызвано предположением, что игра ведется только одним шариком. Игра двумя или несколькими шариками более трудна, но дополнительное усложнение системы передачи на основе такого подхода меньше, чем в системе с эхокомпенсацией, основанной на стандарте Института национальных стандартов США (ANSI). Следовательно, ограничение скорости работы с поочередным переключением направлений обусловлено только возрастанием затухания и помех с увеличением полосы пропускания, необходимой для передачи. Это делает систему пригодной для работы лишь на коротких линиях, где простота ее реализации дает значительные преимущества. Возможно, поэтому такая система была очень популярна в Японии, где ограничения на длину линий менее важны в силу местных географических особенностей.
Разделение направлений передачи по частоте требует такой же ширины полосы пропускания, как и разделение по времени. В обоих случаях основную ширину полосы нужно удвоить. Дополнительное расширение полосы, необходимое для реализации частотных фильтров при разделении по частоте, уравновешивается дополнительным расширением полосы, необходимым для замирания эхо-сигнала при поочередном переключении направлений. Техника поочередного переключения направлений, однако, проще в реализации, поскольку она является чисто цифровой и не требует применения аналоговых узкополосных фильтров.
При методе эхокомпенсации передатчик и приемник могут работать одновременно (рис. 2.6). Передаваемая и принимаемая информация находится в одном и том же канале, а сам метод эхокомпенсации позволяет рассчитать принимаемый сигнал, если известны характеристики линии и передаваемый сигнал. Именно на применении этой третьей технологии построен североамериканский стандарт ANSI. Возможно, географический фактор здесь тоже сыграл свою роль: при эхокомпенсации требуется меньшая ширина полосы пропускания, чем при разделении по времени или по частоте, благодаря чему достигается больший радиус действия (6-8 км).
Если выходное сопротивление передатчика согласовано с комплексным сопротивлением линии, амплитуда сигнала в линии будет в точности равна половине амплитуды передаваемого сигнала (рис. 2.7). Сигнал, принимаемый с другого конца линии, может поэтому быть получен путем вычитания половины выходного сигнала передатчика из суммарного сигнала в линии. К сожале-
52 Глава 2________________________________________
нию, сопротивление линии — величина комплексная и меняется от линии к линии, так что принимаемый сигнал, извлекаемый таким простым способом, содержит эхосигналы от передаваемого сигнала.
Рис. 2.6. Метод компенсации эхосигналов
для U-интерфейса
Эти эхосигналы вызваны рассогласованием между согласующим сопротивлением и характеристическим сопротивлением линии, а также между характеристическими сопротивлениями разных участков линии. Эхосигнал из-за рассогласования между характеристическим сопротивлением последнего участка и оконечным сопротивлением на другом конце незначителен, он гораздо меньше сигнала, передаваемого с другого конца. Эхокомпенсация действует по принципу вычитания сигнала, полученного путем адаптивной оценки эхосигналов, вызванных этими рассогласованиями (рис. 2.7).
Рис. 2.7. Вычисление принимаемого сигнала путем вычитания передаваемого сигнала
Цифровые абонентские линии 53
Для успешной эхокомпенсации нужно, чтобы отсутствовала корреляция между передаваемым и принимаемым сигналами. Если это условие не выполняется, принятый сигнал может иметь сходство с эхом передаваемого сигнала и эхокомпенсатор может попытаться скомпенсировать принимаемый сигнал, поскольку спутает его с эхосигналом. Чтобы гарантировать отсутствие корреляции, на разных концах линии обычно применяют различные алгоритмы кодирования, уменьшая таким путем вероятность случайно возникающей корреляции.
Техническое преимущество выбранного в качестве стандарта ANSI двоичного кода 2В 1Q является следствием меньших требований к полосе пропускания и, в результате, меньшего влияния затухания и шума. Код 2В 1 Q представляет пары битов (2В) как единую четырехуровневую величину (1Q). В качестве его альтернативы обычно используют трехуровневые (троичные) коды. Код ЗВ2Т представляет набор из 3 битов (3В) с восемью возможными комбинациями как пару троичных величин (2Т), позволяющую составить девять комбинаций, число которых можно уменьшить до восьми, если, например, не использовать троичную пару О—О. Подобным же образом код 4ВЗТ представляет группу из 4 битов (4В) с шестнадцатью возможными комбинациями как группу из трех троичных величин (ЗТ), допускающую 27 комбинаций. Отображение 4ВЗТ можно сократить до двух отображений ЗВ2Т, если первый из четырех отображаемых битов будет определять значение первой троичной величины (+1 или — 1), а оставшиеся три бита будут отображаться согласно коду ЗВ2Т. Несмотря на это, 4ВЗТ получил большее распространение, отчасти из-за коммерческой поддержки. Резервные комбинации в кодах ЗВ2Т и 4ВЗТ можно использовать для специальных функций, для улучшения спектрального состава кодов или характеристик в присутствии шума.
Различные коды иллюстрирует рис. 2.8.
Простейший троичный код — это код с чередованием полярности импульсов (биполярный код AMI), который поочередно представляет двоичные единицы как +1 и — 1. Он обладает тем недостатком, что если передается длинная строка нулей, выделение тактовой частоты может быть ухудшено. Чтобы помочь восстановлению тактовой частоты, данные обычно скремблируются, но для этого не нужны дополнительные средства, поскольку скремблирование требуется в любом случае для эхокомпенсации.
54 Глава 2 __________________________
Рис. 2.8. Линейные коды для передачи по парам медных проводов
Одним из простейших кодов является двухуровневый двухфазный код. Попросту говоря, он может представить «I» положительным переходом фазы в центре битового интервала, а «О» — отрицательным переходом фазы. Чтобы избежать необходимости помечать отдельные жилы медной пары, что создает рабочие проблемы при эксплуатации, разумнее использовать дифференциальное двухфазное кодирование. При этом «I» представляется как единичная прямоугольная волна, а «О» — как половина периода прямоугольной волны с вдвое большим периодом. Здесь также имеет место пересечение нулевого уровня (переход через ноль) на каждой границе битовых интервалов.
Недостаток двухфазного кодирования состоит в необходимости иметь полосу пропускания, вдвое более широкую, чем для боль-
Цифровые абонентские линии 55
шинства других кодов, но это компенсируется преимуществами более простой реализации. Поскольку полоса пропускания широка и спектральная энергия на нижних частотах мала, эхосигнал быстро замирает, что позволяет реализовать эхокомпенсатор на основе запоминающего устройства. Кроме того, реализацию можно выполнить с помощью фиксированного выравнивателя, т.к. код является частично самовыравнивающимся (самовыравнивание происходит, поскольку дисперсия нулей и единиц может нейтрализоваться по длине линий, т.к. кодирование нулей как полуцикла с большой величиной третьей гармоники вырабатывает сигнал с характеристиками, подобными характеристикам единиц, кодирующихся как полный цикл).
Двухфазное кодирование тесно связано с миллеровскими кодами, которые имеют гораздо меньший спектр. Например, один из типов миллеровского кода представляет единицу как передачу в середине битового интервала, а нуль — как передачу не в середине битового интервала и вводит передачу конечного бита после двух последовательных нулей, если за ними следует третий нуль. Применение миллеровского кода вместо двухфазного создает возможность снижения спектра кода, что также упрощает реализацию, т.к. отсутствие энергии на нижних частотах опять-таки способствует быстрому замиранию эхосигналов.
По сравнению с этим, выбранный ANSI код 2B1Q имеет одну из наиболее сложных реализации. Он требует как адаптивного выравнивания, так и эхокомпенсации, причем эхокомпенсация может требовать сочетания нескольких технических приемов, что вызвано нелинейностями и длительным временем спадания эхо-сигналов.