Файл: Промышленной токсикологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.02.2024

Просмотров: 94

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. ИСТОЧНИКИ И МАСШТАБЫ ТЕХНОГЕННОГО ЗАГРЯЗНЕНИЯ БИОСФЕРЫ Экологические последствия техногенных эмиссий Загрязнение биосферы человеком представляет собой одну из самых древних проблем в истории цивилизации. Считается, что химическое загрязнение биосферы, вызванное деятельностью человека, началось с первого зажженного им костра. На этом этапе воздействие человека на окружающую среду было незначительным. Далее по мере развития научно-технического прогресса, роста численности населения и его потребностей антропогенное загрязнение возрастало. Человек издавна рассматривал окружающую природную среду в основном как источник ресурсов. Однако развитие современной цивилизации приводит к парадоксу. Стремясь достигнуть независимости от природы, улучшить условия жизни, человек наращивает темпы материального производства. При этом большая часть взятых от природы ресурсов возвращается ей в виде отходов, что ставит под угрозу существование как биосферы, так и самого человека.Биосфера существует, многократно используя одни и те же атомы, т.е. в биосфере вещество используется в круговороте (биогеохимические циклы). Причем, в основном используются легкие биогенные элементы, из которых состоит живое вещество: О, N, C, S, P. Человек же использует вещество планеты крайне неэффективно с образованием огромного количества отходов. При этом в среду хозяйственной деятельности включаются практически все элементы таблицы Менделеева, а также синтезированные человеком соединения: пластмассы, пестициды, радионуклиды и др. В результате происходит обогащение биосферы не свойственными ей веществами, т.е. нарушается естественное соотношение химических элементов. Чтобы обеспечить одного человека предметами существования, каждый год из недр Земли извлекается до 40 т первичного сырья, которые в последующем рассеиваются в биосфере, радикально изменяя эволюционно сформировавшиеся биогеохимические циклы. Острота проблемы заключается в том, что при учете всех видов отходов количество полезного общественного продукта составляет около 10% используемых природных ресурсов, а остальные 90% переходят в отходы – газообразные, жидкие, твердые и, часто, весьма токсичные.Выбрасываемые в окружающую среду загрязнители рассеиваются в биосфере и могут поглощаться живыми организмами. Для ряда загрязнителей наблюдаются очень высокие коэффициенты накопления в пищевых цепях (103…106 раз). При этом человек сталкивается с эффектом бумеранга: находясь в самом конце большинства пищевых цепей, он становится потребителем наиболее загрязненной пищевой продукции.Так, современный горожанин получает в день вместе с пищей, питьевой водой, с табачным дымом и из атмосферы в среднем в 40 раз большесвинца, чем человек доиндустриального века.Главной причиной глобального экологического кризиса является рост народонаселения, инициирующий другие экологические проблемы.В настоящее время население планеты увеличивается быстрее, чем бьется сердце человека: каждую минуту рождается 250 детей, каждые суткинаселение земного шара увеличивается на 250…300 тыс. человек, за год – на 70…85 млн чел. Согласно последним данным ООН, к 2050 году население Земли достигнет 9 млрд человек, но во многих странах демографические показатели снизятся. В частности, сокращение населения в Болгарии составит 35%, в Украине, России, Молдове, Беларуси, Румынии – 25…35%. При этом прирост населения планеты на 88% будет осуществляться за счет развивающихся стран.Появление каждого нового жителя Земли требует дополнительных 0,2…0,5га земли для производства продуктов питания, для жилья, работы, отдыха. Между тем, уровень производства сельскохозяйственной продукции достиг своего предела, и дальнейшее его увеличение может быть достигнуто лишь за счет применения минеральных удобрений, а также пестицидов – для сохранения выращенного урожая. И то, и другое напрямую связано с последующим загрязнением почвы и водоемов.Одновременно нарастает количество крупных городских агломераций. С 1950 по 1983 гг. число жителей в городах увеличилось в 2,6 раза, в то время как сельское население возросло лишь на 53%. Сейчас городское население растет вдвое быстрее, чем население Земли в целом. Среди крупных городов быстрее всего растут города-миллионеры (с населением свыше 1 млн чел.). В 1900г. таких городов было 10, в 1955 – 60, в1980 – 210. В настоящее время в таких городах сосредоточено до 25% всего населения мира, а их число – более 430. В целом городское население планеты составляет более 50%, а в отдельных регионах еще выше: Северная Америка–83%, Австралия-85%, Европа и Латинская Америка-79%, Украина–около 70%. По прогнозам, к 2025 году городское население планеты достигнет 60%. Неоспоримы экономические и социальные преимущества городской жизни. Однако вовлечение в хозяйственный оборот больших территорий по мере роста численности населения приводит к замене естественных экологических систем искусственными. Крупный город изменяет почти все компоненты природной среды: атмосферу, растительность, почву, рельеф, подземные воды, и даже климат. Крупные города имеют над собой «шапку» высотой до 3км, состоящую из устойчивых газообразных аэрозолей. Влияние города на недра распространяется на глубину до 4км. Считается, что город с 2-х млн. населением загрязняет атмосферу в зоне до 100км.Факты интенсивного загрязнения городов общеизвестны. В среднем городской воздух содержит в 150 раз больше пыли и вредных веществ, чем загородный, а соединений свинца в нем в 2000раз больше, чем над океаном. Например, смертность от рака легких среди жителей городов в 4-5 раз выше, чем у жителей деревень. Городских детей от легочных заболеваний умирает в 30 раз больше, чем деревенских. Всемирная организация здравоохранения (ВОЗ) считает, что 70-90% всех раковых заболеваний в городах связано с присутствием в городском воздухе различных химических веществ канцерогенной природы, наиболее распространенными из которых являются полициклические ароматические углеводороды (ПАУ), в том числе самый опасный из них 3,4–бензпирен (БП). За последние 25 лет количество заболеваний раком на планете возросло в 4 раза. Каждый житель большого промышленного города вдыхает в течение жизни (за 70 лет) почти 16 мг БП (при допускаемой концентрации 0,1 мкг/м3). Среднегодовая концентрация БП в атмосфере 37-ми городов Украины превышает норму в 2,5…5,8 раза, а максимальная среднемесячная – в 8 …23,5раза. С ростом численности населения Земли темпы эксплуатации ресурсов недр постоянно возрастают. За минувший ХХ век годовое потребление угля, железа, марганца и никеля увеличилось в 50-60 раз; алюминия, вольфрама, молибдена и калия – в 200…1000 раз. Полагают, что при современной сырьевой базе и сохранении нынешних темпов потребления запасов алюминия хватит на 100 лет; железа – на 150 лет; запасов полиметаллических руд – на 30…60 лет; нефти – на 80…100 лет, природного газа – на 100…140 лет, каменного угля – на 400 лет.Особую категорию с точки зрения исчерпаемости и возобновимости представляют земельные, водные и лесные ресурсы. В настоящее время человек эксплуатирует более 60% суши, использует безвозвратно более 13% годового стока рек, скорость сведения лесов составляет 17 млн га в год. Сейчас площадь тропических лесов сократилась примерно наполовину. Если темпы уничтожения тропических лесов сохранятся, то через 20…30 лет они как экосистемы исчезнут с лица Земли. При строительных и горных работах перемещается более 4 км3 грунтов в год, извлекается из недр Земли ежегодно около 250 млрд т различныхископаемых, сжигается 11 млрд т топлива, выплавляется около1 млрд т различных металлов, рассеивается на полях свыше 500 млн т минеральныхудобрений и 5 млн т пестицидов.Только 50% внесенных удобрений усваивается растениями, потери урожая от сорняков и вредителей часто достигают 30…35%, а 90% пестицидов расходуется впустую, загрязняя почву, воду и атмосферу.В биосферу поступает до 50% извлеченных из недр металлов, 30% химического сырья, 67% теплоты, вырабатываемой ТЭС. Номенклатура продукции химической промышленности составляет 500 тыс химических соединений и ежегодно к ним прибавляется 1…2 тыс новых. Из этого числа 40 тыс обладают вредными для человека свойствами, а 12 тыс являются токсичными, особенно с точки зрения генетики.Подсчитано, что за всю историю человеческого общества выплавлено 20 млрд т железа. Его количество в сооружениях, машинах, транспорте и т.д. сейчас составляет около 6 млрд т, остальное рассеяно в окружающей среде. В течение года рассеивается более 25% годовой продукции железа. Другие вещества рассеиваются еще в большей степени. Так, рассеивание ртути и свинца достигает 80…90% их годового производства.Рост промышленного производства сопровождается лавинообразным нарастанием объема твердых отходов, ежегодное количество которых превышает 2 млрд т. Каждые 8…10 лет количество таких отходов увеличивается в два раза. На каждую тонну добытого угля приходится 20…24 т шахтной воды. Ежегодно из угольных шахт на поверхность откачивается около 2,5 млрд. м3 загрязненных шахтных вод, сброс которых в природные или искусственные водоемы без предварительной очистки наносит природе большой вред. В некоторых шахтах Кривбасса содержание солей в шахтных водах достигает 10…100 г/л. Растут объемы водопотребления, особенно в промышленных странах. Для сносного существования человеку достаточно 15 л воды в сутки. Однако в крупных городах развитых стран потребляют 250…500 л (Москва – 700, Киев – 515, Днепропетровск – 450 л). Расход воды на одного сельского жителя составляет в среднем 60 л/сутки. В мире в среднем – 220…300 л/сутки.В сельском хозяйстве на орошение расходуется 69…70% всей воды, используемой человеком на Земле, 22…23% – в промышленности, а на бытовые нужды идет лишь 8…9%.Одна из причин нехватки воды – расточительность. Так, много воды, накопленной за высокими плотинами водохранилищ, испаряется или просачивается в почву. Воду загрязняют промышленные и бытовые отходы, нитраты из удобрений, смытых с полей, кислотные дожди и вещества, просачивающиеся из свалок токсичных отходов.Уровни содержания нитратов в реках Европы, на которых ведется мониторинг, в среднем в 45 раз выше, чем в чистых реках.Аральское море – классический и печальный пример неправильного хозяйствования. Забор воды на орошение из рек, питающих море, снизил его уровень более чем на 12м, а соленость увеличилась в 10 раз. Кстати, Азовское море в настоящее время недополучает около 23% воды.Качество воды водных объектов Украины находится на чрезвычайно низком уровне. В частности, качество воды Днепра, Северского Донца, речек Приазовья, притоков Днестра и Западного Буга классифицируется как очень грязная (VI класс). К основным загрязнителям рек Украины относятся нефтепродукты, фенолы, азот (аммонийный и нитратный), тяжелые металлы и галогенуглеводороды. Серьезные опасения вызывает состояние почвы. Наибольшей трансформации подвергается самый верхний, поверхностный горизонт литосферы в пределах суши. Под влиянием деятельности людей возникает ускоренная эрозия, когда почвы разрушаются в 100…1000 раз быстрее, чем в естественных условиях. В результате такой эрозии общие потери земельных угодий за всю историю человечества составили 2 млрд га, т.е. превышают ныне обрабатываемую площадь – около 1,5 млрд га (по другим данным – 1,2 млрд га). В ряде регионов Украины заметно ухудшилось состояние земельных угодий в связи с проведением оросительной мелиорации, которая отрицательно влияет на черноземные почвы: уменьшается гумусный горизонт, увеличивается рН до 8…8,5, происходит вторичное засоление корневого слоя.Ежегодно в почву страны вносится 1,75 млн центнеров пестицидов, что приводит к повышенной концентрации вредных веществ в сельскохозяйственных продуктах.Основной глобальной проблемой является сохранение тропических лесов. Обычных лесов сохранилось в мире еще достаточно много: 20% территории Земли покрыто лесами. Но тропические леса – это самые богатые жизнью участки планеты. К настоящему времени влажно-тропические леса в Латинской Америке сведены на 37% от первоначальной площади, в Азии – на 42%, в Африке – на 52%. В отдельных странах положение ещё хуже: в Малазии сохранились 8% лесов, в Таиланде – 7%, в Пакистане – 4%.Если уничтожение лесов будет продолжаться с прежней интенсивностью, то через 50…60 лет тропические леса исчезнут везде, кроме Заира в Африке и Западной Амазонки в Южной Америке. Эти леса – дождевые, занимают всего 6% территории Земли, но в них обитает столько же видов, как и во всех других экосистемах планеты вместе взятых. Каждую минуту дождевой лес исчезает на площади равной футбольному полю. Каждый год он исчезает на территории, равной Австралии (

1) В том числе метан; 2) В том числе 20 млн тонн SO23) Только SO2Основным химическим загрязнителем в настоящее время является диоксид серы, образующийся при сжигании всех видов топлива, выплавке стали, меди и других цветных металлов, при производстве серной кислоты и др.Практически все виды топлива содержат серу: уголь – 3…7%, нефть – 1…2,5%, природный газ – 0,05%. В некоторых полиметаллических рудах содержится до 42…45% серы.При сжигании каменного угля выброс в атмосферу на 1т топлива составляет: 16…20кг SO2, 20кг СО, 10кг NxOy, 50…60кг взвешенных веществ.Антропогенный вклад серы в атмосферу в северном полушарии достигает 93%, в южном полушарии – 50%. Есть несколько районов мира, где выделение диоксида серы в атмосферу особенно интенсивно: Рурский промышленный комплекс, центр Великобритании, северо-восток США, Донбасс. Удельная эмиссия SO2 на территории этих районов весьма высока и достигает 100 т/км2. Средняя эмиссия SO2 в этих странах составляет: Великобритания – 23, Германия – 16, Украина – 6 т/км2.Оксиды серы и азота могут задерживаться в атмосфере до 15 дней. За это время они переносятся ветром на расстояние более 1000км, и одни страны становятся объектом постоянного загрязнения со стороны других. Каждый НПЗ выделяет в сутки 100…300т диоксида серы. Такое количество способно загрязнить воздушную зону на высоте 100м в радиусе 40км от завода. Вокруг коксохимического завода создается геохимическая аномалия в радиусе 15км, вокруг ТЭС – в радиусе 8км.Большое количество загрязняющих веществ поступает в атмосферу городов с автомобильными выхлопами. В настоящее время в мире насчитывается более 1 млрд автомашин, выхлопные газы которых содержат более 500 органических токсичных соединений, в том числе более 40 ПАУ, обладающих канцерогенным и мутагенным действием. Каждая машина с бензиновым двигателем за пройденные 15 тыс. км в год потребляет 4350кг кислорода, а выбрасывает 3250кг СО2, около 600кг СО, 100…200кг углеводородов, 30…40кг окислов азота, 0,5кг тетраэтилсвинца, 0,2г бензпирена.Доля автомобильных выбросов в общем загрязнении атмосферы городов составляет, %: Великобритания – 40…45, США – 50…60, Москва – 95, Ростов – 88, Киев – 85, Одесса – 60, Харьков – 60, Львов – 80, Ужгород, Ялта – 90%, Днепропетровск – более 30%В результате использования тетраэтилсвинца в качестве антидетонационной добавки к бензину с выхлопными газами выбрасываются оксиды, хлориды, фториды, нитраты и сульфаты свинца. Твердые частицы этих соединений образуют аэрозоли, которые оседают в непосредственной близости от автомобильных дорог. В одном из крупнейших городов США Лос-Анджелесе более 4млн автомобилей, которые ежедневно выделяют в атмосферу города 50 т пыли только от износа автопокрышек, свыше 15 т свинца, около 1 тыс т оксидов азота, инициирующих фотохимический смог. В других крупных городах положение не лучше: в Мехико – 3 млн автомашин, Токио – 4,2 млн, в Киеве – около 1,5 млн, в Днепропетровске – более 250 тыс. В воздушное пространство над территорией США с выхлопными газами ежегодно поступает около 200 тыс т свинца: это 1/6 часть ежегодной добычи этого металла в стране. Насыщение биосферы тяжелыми металлами – одно из наиболее опасных глобальных последствий научно-технической революции. Масштабы выбросов кадмия, цинка и меди всеми вулканами мира далеко уступают объему этих металлов, поступающему от мусоросжигательных печей.При сжигании 3 млрд т угля с отходящими газами в атмосферу поступает более 120 млн т золы, в которой содержится некоторых элементов больше, чем добывается из земных недр.Так, ТЭС мощностью 1 млн. кВт, сжигающая 1000 т угля в сутки, выбрасывает в атмосферу до 1кг ртути и 0,1кг мышьяка. Эти соединения обнаруживаются в районе крупных ТЭС в окружности до 30 км. Рассеянные элементы концентрируются в биосфере, а затем поступают в организм человека с продуктами питания, питьевой водой и воздухом. 1.3.Загрязнение водных системЗагрязняющие вещества рано или поздно попадают из атмосферы на поверхность Земли и в водные системы. Промышленные предприятия сбрасывают сточные воды в реки иногда даже без предварительной очистки. Стоки сельскохозяйственных угодий практически никто и не ставит целью очищать, поскольку технически это неразрешимая задача. По той же причине нигде не очищаются ливневые стоки (в том числе, крупных городов). Загрязняются подземные воды – важнейший резервуар пресных вод. Загрязнения пресных вод и земель возвращаются человеку с продуктами питания и питьевой водой.Всего 2% гидросферы приходится на пресные воды, но они постоянно возобновляются. Большая часть пресных вод – 85% - сосредоточена во льдах полярных зон и ледников. Скорость водообмена здесь меньше, чем в океане, и составляет 8000 лет. Поверхностные воды суши обновляются примерно в 500 раз быстрее, чем в океане. Еще быстрее, примерно за 10…12 суток, обновляются воды рек. Наибольшее практическое значение для человека имеют пресные воды рек. Именно эти водные ресурсы подвергаются в настоящее время интенсивному антропогенному истощению: за счет непрерывного увеличения водозабора для растущих нужд промышленности, сельского хозяйства и бытового потребления (количественное истощение) и загрязнения вод (качественное истощение).В настоящее время человечество потребляет на хозяйственно-бытовые нужды 12…13% речного стока, следовательно, потенциальные запасы пресной воды пока еще достаточны, однако в любом районе мира они могут быть истощены из-за нерационального водопользования или загрязнения. Темпы роста водопотребления составляют 5…6% за 5 лет.Основные потребители воды – промышленность и сельское хозяйство (90%).К числу отраслей промышленности, потребляющих большое количество воды, относится энергетика, где вода используется в системах охлаждения. По некоторым оценкам, использование воды для охлаждения составляет сейчас на планете 30% общего водопотребления, а в промышленно развитых странах – до 60%.Главный же потребитель пресной воды – сельское хозяйство. Наблюдаемый в настоящее время дефицит пресной воды усугубляется не только непрерывным ростом водопотребления, но и деградацией качества воды природных водоисточников в результате поступления в них неочищенных или недостаточно очищенных сточных вод промышленного, коммунального и сельскохозяйственного происхождения. Подсчитано, например, что если город потребляет в день 600 тыс м3 воды, то он дает около 500 тыс м3 сточных вод.Строительство очистных сооружений и реконструкция действующих еще существенно отстает от роста потребления воды.Казалось бы, задача решается просто. Достаточно построить необходимое количество очистных сооружений и проблема качественного истощения пресных вод будет решена. На самом деле, проблема оказывается намного сложнее. Даже при самой современной очистке, включая биологическую, из воды извлекаются не более 90% органических и 10…40% неорганических веществ. Такая «очищенная» вода может стать пригодной для потребления только после многократного разбавления чистой водой. В среднем для нормальной жизнедеятельности реки или водоема промышленные или городские стоки после очистки на биологических сооружениях должны быть разбавлены в 15…30 раз. Только после этого вода, загрязненная стоками, восстанавливает свои первоначальные свойства. Мировой водохозяйственный баланс показал, что на все виды водопользования расходуется 4200 км3 воды в год. На разбавление стоков уходит около 20…30% ресурсов пресных вод мира. Это означает, что ресурсы полного мирового речного стока вскоре будут близки к качественному и количественному исчерпанию, а во многих районах мира они уже исчерпаны. Ведь 1 км3 «очищенной» сточной воды «портит» 10…15 км3 речной воды, а неочищенной – в 3…5 раз больше.Следует добавить, что некоторые особенно токсичные сточные воды химических производств вообще невозможно очистить существующими методами. Их приходится закачивать в подземные хранилища на постоянное хранение. Таким образом, создаются опасные объекты, так как всегда существует угроза либо прорыва, либо медленной миграции (фильтрации) таких вод в подземные водоносные горизонты. Так, на территории Украины функционируют около 3 тыс фильтровальных накопителей сточных вод, которые существенно ухудшают состояние подземных вод, в частности, в Кривбассе и Донбассе. Особенно опасным является загрязнение природных вод (в том числе, и питьевой воды) полихлорированными дибензодиоксинами (ПХДД) и дибензофуранами (ПХДФ). Специально ПХДД и ПХДФ не производятся, они образуются в качестве примеси при всех химических процессах галоидирования ароматических соединений в присутствии кислорода, в частности при производстве хлорфенолов и гербицидов. Однако, даже обычная примесь диоксинов в товарном продукте 3.10-4% является чрезвычайно опасной. В момент аварий или залповых выбросов предприятий хлорной химии концентрация диоксинов превышает санитарную норму в 20…100 тыс раз! В мировом масштабе основным загрязнителем поверхностных вод суши является нефть и нефтепродукты, которые поступают в результате естественных выходов нефти в районах залегания, при нефтедобыче, транспортировке, переработке и использовании в качестве топлива и промышленного сырья. Ежегодные поступления нефти в Мировой океан достигают в настоящее время 25…30 млн т в год. После поступления нефти в водный объект первоначально образуются нефтяные слитки-пятна, растекающиеся по водной поверхности: 1т нефти загрязняет акваторию площадью 12 км2. Нефтяная пленка вызывает гибель оплодотворенной икры, нарушает процессы фотосинтеза и выделения кислорода, осуществляемого фитопланктоном, т.е. нарушается газообмен между атмосферой и гидросферой. А ведь основная доля общего запаса органического углерода и общей валовой продукции фотосинтеза приходится на зеленые растения океана, в первую очередь фитопланктон.Среди продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду и гидробионты занимают детергенты – синтетические вещества, очень токсичные к процессам биологического разложения. Ежегодно производится около 4 млн т детергентов. Концентрация этих соединений в сточных водах, как правило, составляет 5…15мг/л (при нормативном требовании для рыбохозяйственного использования водных объектов – 0,1 мг/л). Из других ингредиентов, загрязняющих воду, необходимо назвать тяжелые металлы – ртуть, свинец, цинк, кадмий, медь, олово, хром, марганец, никель, радиоактивные элементы, ядохимикаты, поступающие с сельскохозяйственных полей, и стоки животноводческих ферм.В поверхностные водоемы Днепропетровской области ежегодно сбрасывается более 2 млрд. м3 сточных вод, в том числе без очистки более 740 млн. м3. Большая часть такой воды приходится на долю крупнейших промышленных предприятий металлургической, химической, машиностроительной промышленности. В районе Днепропетровска днепровская вода содержит такие загрязняющие вещества, как нефтепродукты, нитраты, нитриты, сульфаты, соли аммония, хлориды, ионы тяжелых металлов: железа, свинца, никеля, хрома, меди, цинка, марганца, ртути.1.4. Загрязнение почвыОдним из последствий усиливающейся техногенной нагрузки является интенсивное загрязнение почвенного покрова. В роли основных загрязнителей почв выступают металлы и их соединения, радиоактивные элементы, а также удобрения и пестициды. Значительными нарушениями земной поверхности и ее интенсивным загрязнением сопровождаются все процессы добычи полезных ископаемых. Подсчитано, что при добыче 1 млн т железной руды нарушается до 640га земли, марганцевой – 600га, угля – 100га.В результате неполного использования сырья, прямых его потерь, отходов производства к середине XXI века концентрация некоторых металлов в почве может увеличиться в 10…100 раз и более. Одним из результатов техногенной миграции элементов является постепенное «ожелезнение» земной поверхности. Ежегодно выплавляется около 700 млн. т железа, причем необратимые потери железа в результате коррозии и истирания достигают 25%. Установлено, что техногенное поступление железа на порядок выше биогенного. Как уже отмечалось, горное производство негативно воздействует на поверхностные водостоки и подземные воды, которые сильно загрязняются механическими примесями и минеральными солями.Одним из эффективных методов повышения урожайности сельскохозяйственных культур является применение минеральных удобрений, которые обеспечивают в настоящее время около 50% общей прибавки урожая. Мировое производство минеральных удобрений достигло объема 500 млн т в год, потребление удобрений на душу населения в среднем составляет 27 кг/год. К сожалению, при современной технологии растения усваивают только 50% вносимых удобрений, остальная половина уносится водным стоком в ближайший водоем и существенно нарушает равновесие экологических систем и условия развития водных организмов. Загрязнение окружающей среды нитратами вследствие чрезмерного применения азотных удобрений в последнее время становится глобальной экологической проблемой.Неблагоприятные последствия для биосферы и изменения почвенного покрова связаны также с применением в сельском хозяйстве пестицидов, используемых для борьбы с вредителями и болезнями культурных растений, сорняками, для регулирования роста и развития сельскохозяйственных культур. Мировое производство пестицидов превысило 5 млн т в год, ассортимент их насчитывает 100 тыс препаратов и продолжает увеличиваться.Пестициды позволяют не только сохранить и увеличить урожай, но и сократить затраты на выращивание сельскохозяйственных культур и, тем самым, повысить производительность труда на 20…30%. Так, в экономически слаборазвитых странах от болезней и вредителей сельскохозяйственных культур погибает около 50% возможного урожая, а в передовых промышленных странах, где применяются прогрессивные средства борьбы с вредителями, гибнет лишь 15…20% урожая.Сегодня в мире в среднем наносится 0,3 кг пестицидов на 1га, в США – 1,6 кг/га, в Западной Европе – 3 кг/га, в Украине

Контрольные вопросы ……………………………………………... 16

Контрольные вопросы ……………………………………………… 26

Контрольные вопросы ……………………………………………… 36

Контрольные вопросы ……………………………………………… 77

Контрольные вопросы …………………………………………… 133

Контрольные вопросы …………………………………………… 149

Приложения 1 – 7 ……………………………………………………… 220



Экотоксикологический подход к анализу окружающей среды получил широкое распространение. На перечисленных выше принципах базируются как национальные системы и программы мониторинга окружающей среды, в том числе мониторинга качества вод, так и международные программы и исследования в рамках деятельности крупных международных организаций.

Контрольные вопросы
1. Что такое “токсичность”, и какими факторами она определяется?

2. Чем отличается “доза” от концентрации вещества?

3. Сформулируйте основные задачи промышленной токсикологии?

4. Объясните, чем отличается опасность вещества от его токсичности?

5.Какие количественные характеристики вещества установлены в токсикометрии?

6. Чем отличается острое отравление организма от хронического, и какими количественными показателями они характеризуются?

7. Какое свойство токсичного вещества характеризует показатель КВИО?

8. Перечислите применяемые размерности дозы концентраций для характеристики токсичности веществ?

9. Какие показатели положены в основу классификации вредных веществ по степени токсичности и опасности?

10. Каким образом может быть реализован механизм токсичности ксенобиотиков в организме?

11. Приведите примеры наиболее токсичных соединений промышленного

происхождения, токсинов микроорганизмов, ядов животных и растений.

12. Как классифицируются вредные вещества по степени кумуляции?

13. Какой принцип положен в основу классификации химических соединений по степени опасности в водных системах?

14. Перечислите классы опасности загрязняющих воду веществ в рыбохозяйственных водоёмах.

15. Дайте сравнительную характеристику биологическим методам оценки

токсичности водных систем.

16. Что такое биосенсоры?

17. Назовите классы опасности загрязняющих веществ для почвы и показатели, которые положены в основу данной классификации.

18. Дайте определение понятию “экотоксикология”.

19. Чем отличается экотоксикология от классической токсикологии?

Приложение 1
Наименование
вещества
Класс
опасности
Предельно допустимая концентрация
в рабочей зоне
в воздухе населенных мест
максимальная разовая
среднесуточная
1
2
3
4
5

Азота диоксид

Азот оксид

Акролеин


Амиловый спирт

Аммиак

Анилин

Ацетальдегид

Ацетон

Бензин нефтяной

Бензол

3,4-Бензпирен

Бериллий

Бромбензол

1,3-Бутадиен

Ванадия пятиокись

Винилацетат

Гексахлоран

ДДТ

Диметиламин

1,2-Дихлорэтан

Диэтилртуть

Изопропиловый спирт

Капролактам (пары)

Карбофос

Кадмия соли

Кислота азотная

Кислота серная

Кислота синильная

Кислота соляная

Кислота уксусная

Кобальт металлический

Ксилол

Метилмеркаптан

2

3

2

3

4

2

3

4

4

2

1

1

2

4

1

3

1

2

2

2

1

3

3

2

1

2

2

2

2

3

1

3

2

5

30

0,2



20

0,1

5

200

100

5

0,00015

0,001

3

100

0,1

10

0,1

0,1

1

10

0,005



10



0,2

5

1

0,3

5

5

0,5

-

0,8

0,085

0,6

0,03

0,01

0,2

0,05

0,01

0,35

5

1,5







3



0,15

0,03



0,005

3



0,6

0,06

0,015



0,4

0,3



0,2

0,2



0,2

9.10-6

0,04

0,06

0,03

0,01

0,04

0,03

0,01

0,35

1,5

0,1

1*10-6

0,00001

0,3

1

0,002

0,15

0,03

0,003

0,005

1



0,6

0,06



0,0003

0,15

0,1

0,01

0,2

0,06

0,001

0,2




Предельно допустимые концентрации (мг/м3) и классы опасности вредных веществ в воздухе
Приложение 1 (продолжение)



1
2
3
4
5

Метиловый спирт

Мышьяк (неорг.соед.)

Нафталин

Никель металлический

Нитробензол

Озон

Пиридин

Пыль неорганическая

Ртуть металлическая

Сажа (копоть)

Свинец металлический

Сероводород

Сероуглерод

Серы диоксид

Серы триоксид

Скипидар

Стирол

Тетраэтилсвинец

Толуол

Углерода оксид

Углерод четыреххлористый

Фенол

Фосфора пятиокись

Формальдегид

Фреоны (11, 12, 21, 22)

Фурфурол

Хлор

Хлорофос

Хром (6-ти валентный)

Этиловый спирт

Этилбензол

Этилен

2

2

2

1

2

1

2

3

1

3

1

2

2

3

2

4

2

1

3

4

2

2

2

2

4

3

2

2

1

4

3

4

5

0,5

20

0,05

3

30



10

0,01

4

0,01

10



10

1



5

0,005

50

20

20

0,3

1

0,5

1000

10

1

0,5

0,01

1000





1



0,003

0,001

0,008

0,16

0,08

0,3

0,001

0,15

0,001

0,008

0,03

0,5



2

0,04



0,6

3

4

0,01

0,15

0,035

100

0,05

0,1

0,04

0,0015

5

0,02

0,3

0,5

0,003

0,003

0,001

0,008

0,03

0,08

0,1

0,0003

0,05

0,0007

0,008

0,005

0,05

0,05

1

0,002

0,0003

0,6

1

0,7

0,003

0,05

0,003

10

0,05

0,03

0,02

0,0015

5

0,02

0,03


Приложение 2


Предельно допустимые концентрации (мг/л) и лимитирующие показатели вредности вредных веществ в водных объектах

Наименование
вещества
Водные объекты хо зяйственно-питьевого и культурно-бытового назначения
Водные объекты рыбохозяйственного назначения
ПДК
ЛПВ
ПДК
ЛПВ
1
2
3
4
5

Алюминий

Аммиак

Анилин

Ацетальдегид

Ацетон

Бензин

Бензол

3,4-Бензпирен

Бериллий

Бром

1,3-Бутадиен

Ванадий

Винилхлорид

Гексахлоран

ДДТ

Диметиламин

Диоксины

1,2-Дихлорэтан

Диэтилртуть

Железо

Изопрен

Изопропиловый спирт

Капролактам

Кадмий

Карбофос

Керосин технический

Кислота уксусная

Кобальт

Ксилол

Марганец

Масло соляровое

Медь

Метилмеркаптан

Метиловый спирт

0,5

2,0

0,1

0,2

2

0,1

0,01

0,5*10-5

0,0002

0,2

0,05

0,1

0,05

0,02

0,002

0,1

2*10-8

2,0

0,0001

0,3

0,005

0,25

1,0

0,001

0,03

0,01

1,0

0,1

0,05

0,1



1,0

0,0002

3,0

с.-т.

о.-с.

с.-т.

орг.

о.-с.

орг.

с.-т.

с.-т.

с.-т.

с.-т.

орг.

с.-т.

с.-т.

орг.

с.-т.

с.-т.

с.-т.

орг.

с.-т.

орг.

орг.

орг.

о.-с.

с.-т.

орг.

орг.

о.-с.

с.-т.

орг.

орг.



орг.

орг.

с.-т.

0,04

0,05

0,0001



0,05



0,5









0,001



отс.

отс.

0,005

2*10-8





0,1





0,01

0,005

отс.



0,01

0,01



0.01

0,01

0,001



0,1

т.

т.

т.



т.



т.









т.



т.

т.

т.

т.





т.





т.

т.

т.



т.

т.



т.

т.

т.



т.

Приложение 2 (продолжение)

1
2
3
4
5

Молибден

Мышьяк

Нафталин

Нефтепродукты

Никель

Нитраты

Нитриты

ПАВ

Перметрин (ровикурт)

Полиакриламид

Полихлорбифенилы

Роданиды

Ртуть

Свинец

Селен

Сероуглерод

Сероводород

Стирол

Стронций

Сульфиды

Тетраэтилсвинец

Толуол

Углерод четыреххлористый

Фенол

Формальдегид

Фреоны

Фтор

Хлор cвободный

Хлорбензол

Хлороформ

Хлорофос

Хром (Cr+6)

Хром (Cr+3)

Цианиды

Цинк

Этиленгликоль

0,25

0,01

0,01

0,1

0,1

45,0

3,0

0,5

0,07

2,0

0,001

0,1

0,0005

0,03

0,001

1,0

0,003

0,1

2,0

отс.

отс.

0,5

0,002

0,001

0,05

10,0

1,5

0,3

0,02

0,06

0,05

0,05

0,5

0,035

5,0

1,0

с.-т.

с.-т.

орг.

орг.

с.-т.

с.-т.

с.-т.

орг.

с.-т.

с.-т.

с.-т.

с.-т.

с.-т.

с.-т.

о.-с.

орг.

орг.

орг.

с.-т.

о.-с.

с.-т.

с.-т.

с.-т.

орг.

с.-т.

с.-т.

с.-т.

орг.

с.-т.

с.-т.

орг.

с.-т.

с.-т.

с.-т.

о.-с.

с.-т.

0,0012

0,01

0,004

0,05

0,01

40,0

0,08

0,1

отс.

0,01

отс.

0,15

0,00001

0,006

0,0016

1,0

отс.

0,1

0,4

отс.

отс.

0,5



0,001

0,1



0,05

отс.

0,001



отс.

0,001

0,005

0,05

0,01

0,25

т.

т.

т.

р.-х.

т.

с.-т.

т.

т.



т.



т.

т.

о.-с.

т.

т.



орг.

т.





орг.



р.-х.

т.



т.

т.

р.-х.



т.

с.-т.

т.

т.

т.

с.-т.


Условные обозначения: о.-с.– общесанитарный; т.– токсикологический;

орг.– органолептический; с.-т.– санитарно-токсикологический;

р.-х.– рыбохозяйственный

Приложение 3
Значения ПДК химических веществ в почве


Название вещества



ПДКп , мг/кг

Азотно-калийные удобрения

Атразин

Бензол, толуол

3,4-Бензпирен

Ванадий

Гамма-ГКЦГ (линдан)

Гетерофос

ДДТ (инсектицид)

2,4 Д (дихлорфенол)

Кадмий

Карбофос (инсектицид)

Кобальт

Марганец

Медь

Метафос

Мышьяк

Никель

Нитраты

Полихлорпинен (инсектицид)

Полихлоркамфен (инсектицид)

Поверхностно-активные вещества

Полихлорбифенилы

Прометрин (арборицид)

Пятиокись фосфора

Ртуть

Свинец

Сера

Сероводород

Симазин

Стирол

Фтор

Хлорамин

Хлорамп (арборицид)

Хлорофос (инсектицид)

Хром (VI)

Цинк

120

0,5

0,3

0,02

150

0,1

0,05

0,1

0,05

1,0

2,0

5,0

1500

3,0

0,1

2,0

4,0

130

0,5

0,5

0,2

0,06

0,5

200

2,1

32

160

0,4

0,01

0,1

10

2,0

0,05

0,5

0,05

23

Приложение 4



ПДК химических элементов в пищевых продуктах, мг/кг продукта



Элемент

Виды продуктов

рыбные

мясные

молочные

хлеб, зерно

овощи

фрукты

Соки

Алюминий

Железо


Йод

Кадмий


Медь

Мышьяк

Никель

Олово

Ртуть

Свинец

Селен

Сурьма

Фтор

Хром

Цинк

30,0


30,0

2,0

0,1

10,0

1,0

0,5

200,0

0,5

1,0

1,0

0,5

10,0

0,3

40,0

10,0


50,0

1,0

0,05

5,0

0,5

0,5

200,0

0,03

0,5

1,0

0,1

2,5

0,2

40,0

1,0


3,0

0,3

0,01

0,5

0,05

0,1

100,0

0,005

0,05

0,5

0,05

2,5

0,1

5,0

20,0


50,0

1,0

0,022

5,0

0,2

0,5



0,01

0,2

0,5

0,1

2,5

0,2

25,0

30,0


50,0

1,0

0,03

10,0

0,2

0,5

200,0

0,02

0,5

0,5

0,3

2,5

0,2

10,0

20,0


50,0

1,0

0,03

10,0

0,2

0,5

100,0

0,01

0,4

0,5

0,3

2,5

0,1

10,0

10,0

15,0

1,0

0,002

5,0

0,2

0,3

100,0

0,005

0,4

0,5

0,2

2,5

0,1

10,0



Приложение 5
ПДК тяжелых металлов в растительном сырье
и готовых пищевых продуктах

Растительное сырьё и пищевые продукты

Химические элементы и их ПДК, мг/кг

Cd

Cu

Hg

Pb

Zn

1

2

3

4

5

6

Хлебобулочные и кондитерские изделия

Зерновые

0,1(0,03)*

10

0,03

0,5(0,3)

50

Зернобобовые

0,1(0,03)

10

0,02

0,5(0,3)

50

Крупы **

0,1(0,03)

10

0,03

0,5(0,3)

50

Мука, кондитерские изделия

0,1(0,03)

10

0,02

0,5(0,3)

50

Хлеб

0,05

5

0,01

0,3

25

Бараночные и сухарные изделия

0,1

10

0,02

0,5

30

Отруби пшеничные

0,1

20

0,03

1

130

Соль поваренная

0,1

3

0,01

2

10

Крахмал

0,1

10

0,02

0,5

30

Сахар-песок

0,05

1

0,01

1

3

Пектин

0,1

10

0,1

1

30

Желатин

0,03

15

0,05

2

100

Орехи (ядро)

0,1

20

0,03

0,5

50

Конфеты

0,1

15

0,01

1

30

Какао-порошок и шоколад

0,5

50

0,1

1

70

Печенье

0,1

10

0,02

0,5

30

Молочные изделия

Масло сливочное

0,03

0,5

0,03

0,1

5

Растительные продукты

Масло растительное

0,05




0,05

0,1

5

Маргарины и кулинарные жиры

0,05

1

0,05

0,1

10

Овощи свежие и свежемороженые

0,03

5

0,02

0,5

10

Фрукты, ягоды свежие и свежемороженые

0,03

5

0,02

0,4

10

Грибы свежие, консервиров. и сухие

0,1

10

0,05

0,5

10

Чай

1

100

0,1

10




Консервы овощные в стеклянной таре

0,03

5

0,02

0,5

10

Консервы овощные в металлической таре

0,05

5

0,02

1

10

Консервы фруктовые, ягодные и соки в стеклянной таре

0,03

5

0,02

0,4

10

Консервы фруктовые, ягодные и соки в металлической таре

0,05

5

0,02

1

10

Овощи сушенные***

0,03

5

0,02

0,5

10

Фрукты и ягоды сушеные***

0,03

5

0,02

0,4

10

Специи и пряности

0,2







5




Продукция птицеводства

Яйца

0,01

3

0,02

0,3

50

Яичный порошок

0,1

15

0,1

3

200

Напитки

Минеральные воды

0,01

1

0,005

0,1

5

Напитки на настоях и эссенциях

0,03

3

0,005

0,3

10

Продукты детского питания

Продукты на овощной и фруктовой основе

0,02

5

0,01

0,3

10



* В скобках приведены ПДК в растительном сырье, предназначенном для производства детских и диетических продуктов.

** Для гречневой крупы ПДК кадмия – 0,04 мг/кг.

*** В пересчете на исходный продукт.

Приложение 6

Список запрещенных пищевых добавок


  1. Пищевые добавки, не разрешенные к применению в Украине


Е103 Е214 Е281 Е343 Е386 Е430 Е486 Е641 Е943

Е105 Е215 Е282 Е344 Е387 Е431 Е487 Е906 Е944

Е111 Е216 Е283 Е345 Е388 Е443 Е488 Е911 Е945

Е121 Е217 Е313 Е349 Е389 Е444 Е489 Е916 Е946

Е123 Е218 Е314 Е350 Е390 Е446 Е496 Е917 Е952

Е125 Е219 Е316 Е365 Е391 Е462 Е505 Е918 Е955

Е126 Е239 Е317 Е366 Е399 Е467 Е537 Е919 Е957

Е130 Е240 Е318 Е367 Е408 Е472а Е542 Е924 Е958

Е152 Е242 Е319 Е368 Е409 Е477 Е550 Е925 Е959

Е161а Е264 Е323 Е370 Е410 Е478 Е557 Е926 Е1000

Е161с Е265 Е324 Е375 Е411 Е480 Е560 Е928 Е1001

Е161f Е266 Е328 Е383 Е419 Е484 Е580 Е929 Е1202

Е181 Е280 Е329 Е384 Е429 Е485 Е632 Е940


  1. Пищевые добавки, не разрешенные к применению в России


Е103 Е215 Е283 Е350 Е408 Е476 Е520 Е622 Е922

Е107 Е216 Е302 Е351 Е409 Е477 Е521 Е623 Е923

Е121 Е217 Е303 Е352 Е418 Е478 Е522 Е624 Е924

Е123 Е218 Е305 Е355 Е419 Е479 Е523 Е625 Е925

Е125 Е219 Е308 Е356 Е429 Е480 Е535 Е628 Е926

Е127 Е225 Е309 Е357 Е430 Е482 Е537 Е629 Е929

Е128 Е226 Е310 Е359 Е431 Е483 Е538 Е632 Е942

Е140 Е227 Е311 Е365 Е432 Е484 Е541 Е633 Е943

Е153 Е228 Е312 Е366 Е433 Е485 Е542 Е634 Е944

Е154 Е230 Е313 Е367 Е434 Е486 Е550 Е635 Е945

Е155 Е231 Е314 Е368 Е435 Е487 Е552 Е640 Е946

Е160с Е232 Е317 Е436 Е488 Е554 Е641 Е957

Е160г Е233 Е318 Е370 Е441 Е489 Е555 Е906 Е959

Е166 Е237 Е323 Е375 Е442 Е491 Е556 Е908 Е1000

Е173 Е238 Е324 Е381 Е443 Е492 Е557 Е909 Е1001

Е174 Е240 Е325 Е384 Е444 Е493 Е559 Е910 Е1105

Е175 Е241 Е328 Е387 Е446 Е494 Е560 Е911 Е1503

Е180 Е252 Е329 Е388 Е462 Е495 Е574 Е913 Е1521

Е182 Е253 Е343 Е389 Е463 Е496 Е576 Е916

Е209 Е264 Е344 Е390 Е465 Е505 Е577 Е917

Е213 Е281 Е345 Е399 Е467 Е512 Е579 Е918

Е214 Е282 Е349 Е403 Е474 Е519 Е580 Е919

Приложение 7



Доказанные канцерогены для человека
( группа 1 по классификации МАИР)

Наименование продукта

Органы-мишени

Группа населения

1

2

3

1. Химические соединения

4-Аминобифенил

Мочевой пузырь

Рабочие

Бензидин

Мочевой пузырь

Рабочие

Бензол

Кроветворная система

Рабочие


Бериллий и его соединения

Легкие

Рабочие

Бис (хлорметил) эфир и технический хлормети-

ловый эфир

Легкие

Рабочие

Винилхлорид

Печень, кровеносные сосуды (мозг, легкие, лимфатическая система)

Рабочие

Горчичный газ

(сернистый газ)

Глотка, гортань, легкие

Рабочие

Кадмий и его соединения

Легкие, предстательная железа

Рабочие

Каменноугольные пеки

Кожа, легкие, мочевой пузырь, гортань, полость рта

Рабочие


Каменноугольные смолы

Кожа, легкие,

мочевой пузырь

Рабочие

Минеральные масла (неочищенные)

Кожа, легкие,

мочевой пузырь

Рабочие

Мышьяк и его соединения

Легкие, кожа

Общие группы населения

2-Нафтиламин

Мочевой пузырь, легкие

Рабочие

Никель и его соединения

Полость носа, легкие

Рабочие

Сланцевые масла

Кожа, желудочно-кишечный тракт

Рабочие

Диоксины

Легкие (подкожная клетчатка, лимфатическая система)

Рабочие, общие группы населения

Хром шестивалентный

Легкие, полость носа

Рабочие