Файл: 1. Элементы подгр. 1А. Строение атомов, сравнение свойств атомов, распространение в природе. Получение простых веществ и их свойства.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 37
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Al(NO3)3 + 3(NH3 · H2O) = AlO(OH)↓ + 3NH4NO3 + H2O (80 °C)
В случае использования избытка щелочей в обменной реакции подобного типа гидроксид алюминия осаждаться не будет, поскольку алюминий в силу своей амфотерности переходит в анион:
Al(OH)3(т) + OH− = [Al(OH)4]−
Пример молекулярного уравнения реакции этого типа:
Al(NO3)3 + 4NaOH(избыток) = Na[Al(OH)4] + 3NaNO3
Образующаяся соль относится к числу комплексных соединений (комплексных солей): они включают комплексный анион [Al(OH)4]−. Названия этой соли таково:
Na[Al(OH)4] - тетрагидроксоалюминат натрия
Растворение амфотерных гидроксидов в щелочных растворах
рассматривается как процесс образования гидроксосолей (гидроксокомплексов). Экспериментально доказано существование гидроксомплексов [Аl(ОН)4(Н2О)2]-, [Аl(ОН)6]3-, [Аl(ОН)5(Н2O)]2-; из них
первый — наиболее прочный. Координационное число алюминия
в этом комплексе равно 6, т.е. алюминий является шестикоординированным.
Комплексным (координационным) соединением (комплексом) называется такое соединение, в узлах кристаллической решетки которого находятся комплексные ионы, обладающие высокой симметрией, устойчивые как в твердом состоянии, так и в растворах.
В центре комплексного иона находится металл (обычно d-металл, реже р-металл), который называется комплексообразователь. Вокруг него очень симметрично располагаются лиганды, за счет чего электронная плотность распределяется равномерно и комплекс становится устойчивым. Лигандами могут быть анионы кислот или нейтральные молекулы (Н2О, СО, NH3), которые имеют неподеленную пару электронов. Она принимает участие в донорно-акцепторном взаимодействии с вакантной орбиталью комплексообразователя.
8. Бериллий. Получение и свойства
Бериллий — светло-серый, легкий, достаточно твердый, хрупкий металл. На воздухе покрывается оксидной пленкой.
Получение:
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия: BeCl2+2K=Be+2KCl.B e C l 2 + 2 K ⟶ B e + 2 K C l {\displaystyle {\mathsf {BeCl_{2}+2K\longrightarrow Be+2KCl}}}
В настоящее время бериллий получают, восстанавливаяфторид бериллиямагнием
: BeF2+Mg=Be+MgF2,
либо электролизом расплава смеси хлоридов бериллия и натрия.
Химические свойства:
Для бериллия характерна только одна степень окисления +2. По многим химическим свойствам бериллий больше похож на алюминий, чем на находящийся непосредственно под ним в таблице Менделеева магний (проявление «диагонального сходства»). Металлический бериллий относительно мало реакционноспособен при комнатной температуре.
Пассивируется в холодной воде, концентрированных серной и азотной кислотах. Восстановитель, реагирует с кипящей водой, разбавленными кислотами, концентрированными щелочами, неметаллами, аммиаком, оксидами металлов, при нагревании сгорает в кислороде и на воздухе. С металлами бериллий образует интерметаллические соединения.
2Be + O2(900°С) = 2BeO
С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом.
Be + Hal2(нагр.) = 2BeHal2 (7Be+2F→Be7F2; 2Be+I2→2BeI )
3Be + C2H2 = BeC2 + H2↑
Be + MgO = BeO + Mg
Взаимодействие с серой: 2Be+S→Be2S
Взаимодействие с азотом(N): 2Be+N2→2BeN
Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.
Be + 2HCl(разб.) = BeCl2 + H2↑
3Be + 8HNO3(разб) = 3 Be(NO3)2 + 2 NO + 4 H2O
Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.
Be + 2NaOH(конц.) + H2O = Na2BeO2 + H2↑
Be + 2NaOH(расплав) = Na2[Be(OH)4] + H2↑
Взаимодействие с водой:
2Be+3H2O→2H2 + ВеО + Ве(OH)2
2Be + 3H2O(кип.) = BeO↓ + Be(OH)2↓ + 2H2↑
Бериллий склонен к образованию комплексных соединений при взаимодействии с водными растворами щелочей.
Взаимодействие с азотной кислотой:
Взаимодействие с растворами щелочей:
Be + 2KOH + 2H2O = K2[Be(OH)4] + H2
Производство и применение:
В России планируется строительство нового комбината по производству бериллия к 2019 году. На долю остальных стран приходилось менее 1 % мировой добычи. Всего в мире производится 300 тонн бериллия в год (2016 год).
Легирование сплавов
Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей, изготовленных из этих сплавов изделий.
РентгенотехникаБериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубокЯдерная энергетика
В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. Лазерные материалыВ лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).Аэрокосмическая техника
В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материалРакетное топливоСтоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в связи с этим приложены значительные усилия для выявления бериллийсодержащих топлив, имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия.Огнеупорные материалыОн служит высокотеплопроводным высокотемпературным изолятором и огнеупорным материалом для лабораторных тиглей и в других специальных случаях.Акустика
Ввиду своей легкости и высокой твёрдости бериллий успешно применяется в качестве материала для электродинамических громкоговорителей. Биологическая роль и физиологическое действие:
В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.
(на всякий случай)
Соединения бериллия (II). В кислых водных растворах ионы Ве2+ находятся в виде прочных аква-комплексов [Ве(Н2О)4]2+; в сильно щелочных растворах – в виде ионов [Ве(ОН)4]2–.
Оксид ВеО – амфолит, при сплавлении взаимодействует и с основными, и с кислотными оксидами:
ВеО + SiО2 = BeSiО3; ВеО + Na2О = Na2BeО2
При нагревании ВеО взаимодействует со щелочами и кислотами:
ВеО + 2HCl(конц.) = BeCl2
ВеО + 2NaОН + Н2О = Na2[Ве(ОН)4]
ВеО применяют в качестве химически стойкого и огнеупорного материала для изготовления тиглей и специальной керамики, а в атомной энергетике – как замедлитель и отражатель нейтронов.
Гидроксид Ве(ОН)2 – полимерное соединение, и поэтому в воде не растворяется, амфолит.
Ве(ОН)2 + 2NaОН(конц.) = Na2[Ве(ОН)4]
ВеО + 2HCl + 3Н2О = [Ве(Н2О)4]Cl2
Амфотерностъ ВеНа12 наиболее отчетливо проявляется у фторида. Так, при нагревании BeF2 с основными фторидами образуются фторобериллаты (другие галогенобериллаты не характерны): 2KF + BeF2 = K2[BeF4]
При взаимодействии BeF2 с кислотными фторидами образуются соли бериллия:
BeF2 + SiF4 = Be[SiF6]
Гидрид ВеН2– сильный восстановитель; при его разложении водой выделяется водород: ВеН2 + 2Н2О = Ве(ОН)2↓ + Н2↑
Большинство солей бериллия растворимо в воде, нерастворимы ВеСО3, Ве3(РО4)2 и некоторые другие. Для бериллия весьма характерны двойные соли – бериллаты со сложными лигандами, например:
Na2SО4 + BeSО4 = Na2[Be(SО4)2]
(NH4)2CО3 + BeCО3 = (NH4)2[Be(CО3)2]
9. Цинк. Получение и свойства.
Элемент цинк (Zn) в таблице Менделеева имеет порядковый номер 30. Он находится в четвертом периоде второй группы. Атомный вес - 65,37. Распределение электронов по слоям 2-8-18-2
Происхождение названия элемента неясно, однако кажется правдоподобным, что оно произведено от Zinke (по-немецки «острие», или «зуб»), благодаря внешнему виду металла.
Цинк представляет собой синевато - белый металл, плавящийся при 419 С, а при 913 С превращающийся в пар; плотность его равна 7,14 г/см3. При обыкновенной температуре цинк довольно хрупок, но при 100-110 С он хорошо гнется и прокатывается в листы. На воздухе цинк покрывается тонким слоем окиси или основного карбоната, предохраняющим его от дальнейшего окисления.
Вода почти не действует на цинк, хотя он и стоит в ряду напряжений значительно левее водорода. Это объясняется тем, что образующаяся на поверхности цинка при взаимодействии его с водой гидроокись практически нерастворима и препятствует дальнейшему течению реакции. В разбавленных же кислотах цинк легко растворяется с образованием соответствующих солей.
Кроме того, цинк подобно бериллию и другим металлам, образующим амфотерные гидроокиси, растворяется в щелочах. Если нагреть цинк на воздухе до температуры кипения, то пары его воспламеняются и сгорают зеленовато-белым пламенем, образуя окись цинка
При нагревании цинк взаимодействуют с неметаллами (кроме водорода, углерода и азота). Активно реагирует с кислотами:
Zn + H2SO4 (разб.) = ZnSO4 + H2
Цинк – единственный элемент группы, который растворяется в водных растворах щелочей с образованием ионов [Zn(OH)4] (гидроксоцинкатов):
Zn + 2OH + 2H2O = [Zn(OH)4] + H2
Физические свойства Цинка. Цинк - металл средней твердости. В холодном состоянии хрупок, а при 100-150 °С весьма пластичен и легко прокатывается в листы и фольгу толщиной около сотых долей миллиметра. При 250 °С вновь становится хрупким. Полиморфных модификаций не имеет. Кристаллизуется в гексагональной решетке с параметрами а = 2,6594Å, с = 4,9370Å. Атомный радиус 1,37Å; ионный Zn2+ -0,83Å. Плотность твердого Цинка 7,133 г/см3 (20 °С), жидкого 6,66 г/см3 (419,5 °С); tпл 419,5 °С; tкип 906 °С. Температурный коэффициент линейного расширения 39,7·10-3 (20-250 °С), коэффициент теплопроводности 110,950 вт/(м ·К) 0,265 кал/см·сек·°С (20 °С), удельное электросопротивление 5,9·10-6 ом·см (20 °С), удельная теплоемкость Цинка 25,433 кдж/(кг·К.) [6,07 кал/(г·°С)]. Предел прочности при растяжении 200-250 Мн/м2 (2000-2500 кгс/см2), относительное удлинение 40-50%, твердость по Бринеллю 400-500 Мн/м2(4000-5000 кгс/см2). Цинк диамагнитен, его удельная магнитная восприимчивость -0,175·10-6.
Химические свойства Цинка. Внешняя электронная конфигурация атома Zn 3d104s2. Степень окисления в соединениях +2. Стандартный электродный потенциал равный -0,76 В характеризует Цинк как активный металл и энергичный восстановитель. На воздухе при температуре до 100 °С Цинк быстро тускнеет, покрываясь поверхностной пленкой основных карбонатов. Во влажном воздухе, особенно в присутствии СО2, происходит разрушение металла даже при обычных температурах. При сильном нагревании на воздухе или в кислороде Цинк интенсивно сгорает голубоватым пламенем с образованием белого дыма оксида цинка ZnO. Сухие фтор, хлор и бром не взаимодействуют с Цинком на холоду, но в присутствии паров воды металл может воспламениться, образуя, например, ZnCl2. Нагретая смесь порошка Цинка с серой дает сульфид Цинк ZnS. Сульфид Цинк выпадает в осадок при действии сероводорода на слабокислые или аммиачные водные растворы солей Zn. Гидрид ZnH2 получается при взаимодействии LiАlН4 с Zn(CH3)2 и других соединениями Цинка; металлоподобное вещество, разлагающееся при нагревании на элементы. Нитрид Zn3N2 - черный порошок, образуется при нагревании до 600 °С в токе аммиака; на воздухе устойчив до 750 °С, вода его разлагает. Карбид Цинка ZnC2 получен при нагревании Цинка в токе ацетилена. Сильные минеральные кислоты энергично растворяют Цинк,