Файл: Технология переработки нефти и газа.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 16

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Количество углерода и водорода в нефтях находится в сравнительно узких пределах.

Элемент

Содержание, % мас.

Углерод (С)

82-87

Водород (Н)

11-15

Сера (S)

0,1-7,0

Кислород (O)




Азот (N)

меньше 0,5-0,6


Азот и кислород присутствуют в основном в виде высокомолекулярных, конденсированных соединений, сера - в основном в низкомолекулярных соединениях парафинового ряда.

С увеличением возраста нефти содержание O, N, S в ней снижается, а С и Н – повышается. Отщепление гетероэлементов происходит в виде простых соединений – CO2, H2O, H2S, NH3, S, N2. Среди микроэлементов больше всего в нефтях содержится V и Ni, которых по содержанию в нефти больше, чем в земной коре.

Групповой состав нефти
Нефть – сложная многокомпонентная система и знание группового состава нефти позволяет с максимальной эффективностью ее использовать в нефтепереработке. Основная масса компонентов нефти – углеводороды, которые представляют три класса углеводородов:

Парафиновые (алканы) СnH2n + 2 – составляют значительную часть до 25-35 % масс., преимущественно это углеводороды нормального строения n - алканы и изоалканы (i- алканы) – преимущественно монометилзамещенные с различным положением метильной группы в цепи (изопреноидные структуры) –

- С – С – С –

|

С

С ростом молекулярной массы фракций нефти содержание в них алканов уменьшается.

Попутные нефтяные и природные газы практически полностью состоят из n-алканов С1 – С4: метан, этан, пропан, бутан и изобутан и 2,2-диметилпропан.

Природные газы добывают с чисто газовых месторождений и состоят в основном из метана СН4. ПНГ и газы газоконденсатных месторождений кроме метана содержат газы С24 и выше С5+ - соединения, поэтому их называют жирными газами. Газообразные алканы С14 могут образовывать твердые комплексы с водой (кристаллогидраты), образуя так называемые соединения включения, например, С
3Н8 ∙ n H2O. Соединения включения – вещества, в которых молекулы одного химического соединения - С3Н8 («гость») располагаются в полостях кристаллической структуры или молекул другого соединения - H2O («хозяина»). Такие комплексы углеводородных газов с водой образуются при пониженной температуре (около 0 0С) и часто являются причиной закупорки или образования твердых пробок в газопроводах. В присутствии молекул газов вода кристаллизуется с образованием «клеток», в которых заключены молекулы алкана.

Из жирных газов получают легкий газовый бензин, который является добавкой к товарным бензинам, а также сжатые жидкие газы в качестве горючего, а этан, пропан и бутаны после разделения служат сырьем для нефтехимии.

Алканы от С5 до С15 в обычных условиях жидкости, входят в состав бензиновых (С510) и керосиновых (С11- С15) фракций нефти. Жидкие алканы - в основном, n-алканы или слабразветвленные i-алканы.

Твердые алканы C16 +, входящие в состав нефтяных парафинов (n-C16 – C35) и церезинов (i-C36 +).

Нафтеновые углеводороды – циклоалканы (цикланы) СnH2n + 2-2Kц – входят в состав всех фракций, кроме газов. Бензиновые и керосиновые фракции нефтей представлены, в основном, гомологами циклопентана С5Н10 и циклогексана С6Н12,, преимущественно с короткими С13 алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические конденсированные и реже неконденсированные нафтены с 2-4 циклами. По физическим сойствам нафтены занимают промежуточное положение между парафинами и ароматическими углеводородами, по химическим свойствам они сходны с парафинами, что объясняется их молекулярным строением. Нафтены благотворно влияют на технологические свойства масляных дистиллятов, т.к. они обладают достаточно высокой температурой затвердевания и практически не изменяют коэффициенты вязкости с температурой.

Ароматические углеводороды (до 4-5 конденсированных ядер) СnHn + 2 – 2Ка, представлены в нефтях гомологами бензола С

6Н6 в бензиновых фракциях и производными полициклических аренов с числом Ка до 4 и более в средних топливных и масляных фракциях.

Углеводороды гибридного (смешанного) строения имеют в своем составе различные структурные элементы: ароматические кольца, пяти или шестичленные циклопарафиновые циклы и алифатические цепи. Сочетание этих элементов может быть многообразным а число изомеров –огромным. Условно гибридные углеводороды можно подразделить на три типа: парафино-нафтеновые, парафино-ареновые и парафино-нафтено-ареновыми.

В керосиновых фракциях арены представлены гомологами бензола, но с более длинными углеводородными цепями, чем в бензиновых фракциях, а также имеются в заметных количествах гомологи нафталина, среди них встречаются метил-, диметил- и полиметилзамещенные нафталины, а также гибридные углеводороды –тетралин и его гомологи.

В масляных фракциях обнаружены аналоги антрацена, фенантрена и их гомологи.

Гетероатомные соединения нефти

Серосодержащие соединения – сера является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах, содержание ее в нефтях колеблется от сотых долей до 5-6 % масс, реже до 14 % масс.

В нефтях идентифицированы следующие типы серосодержащих соединений:

- элементарная сера (S) и сероводород (H2S);

- меркаптаны (R-SH);

-cульфиды (тиоэфиры) –R-S-R-;

- дисульфиды (дитиоэфиры) – R-S-S-R-/

Содержание меркаптановой серы достигает 15 % масс. От ее общего содержания и сосредоточена в бензиновых фракциях, сульфиды (содержание доходит до 50-80 % масс.) сосредоточены бензиново-керосиновых фракциях, а дисульфиды – в керосино-газойлевых фракциях.

Сера (сера, сероводород, меркаптаны) самые вредные агрессивные вещества в нефти , приводят к коррозии металла и ухудшают антидетонационные свойства топлив и качество вторичных продуктов переработки нефти (нефтяной кокс).

Кислородсодержащие соединения – представлены в виде кетонов, простых эфиров R-O-R, кислот RCOOH, сложных эфиров R-COO-R’.

Подавляющее количество кислорода содержится в нефтях в фенолах, нафтеновых и алифатических кислотах. Нафтеновые кислоты являются производными нафтеновых углеводородов – циклопентана и циклогексана. Ароматические кислоты – производные бензола и полициклических аренов.

Азотсодержащие соединения
– азот (менее 1 % масс.) содержится в виде соединений, обладающих основными или нейтральными свойствами, большая их часть концентрируется в высококипящих фракциях и остатках перегонки нефти. Азотистые основания могут быть выделены из нефти обработкой слабой серной кислотой. Азотистые основания представляют собой в основном гомологи пиридина, хинолина и реже акридина и находятся в высококипящих фракциях нефти. Порфирины содержат в молекуле 4 пиррольных кольца и встречаются в нефтях в виде комплексов металлов – ванадия и никеля. Они сравнительно легко выделяются из нефти экстракцией полярными растворителями, такими как ацетонитрил, пиридин, диметилформамид и др.

Азотистые соединения - достаточно термически стабильные и не оказывают заметного влияния на эксплуатационные качества нефтепродуктов, азотистые основания – используются как дезинфицирующие средства, ингибиторы коррозии, как сильные растворители, добавки к смазочным маслам и битумам. Однако в процессах переработки нефти отравляют катализаторы, вызывают осмоление и потемнение нефтепродуктов.

Смолисто-асфальтеновые вещества (САВ)– концентрируются в тяжелых нефтяных остатках – мазутах, гудронах, битумах и др, их содержание в нефтях – от долей процента до 45 %. САВ представляют сложную многокомпонентную полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и др. Выделение индивидуальных соединений САВ из нефтей сложно и молекулярная структура их точно не установлена.

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ
Перечень рекомендуемой литературы

Основная литература:
1. Технология переработки нефти. В 2-х частях. Часть первая. Первичная переработка нефти /Под ред. О.Ф. Глаголевой и В.М. Капустина. – М.: КолосС, 2006. – 400 с.
2. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с.
3. Мановян А.К. Технология переработки природных энергоносителей.- М.: Химия, КолосС, 2004. – 456 с.
4. Вержичинская С.В., Дигуров Н.Г., Синицин С.А. Химия и технология нефти и газа: Учебное пособие для среднего профессионального образования. – М.: ФОРУМ: ИНФРА-М, 2007.-400 с.

5. Эрих В.Н., Расина М.Г., Рудин М.Г. Химия и технология нефти и газа: Учебное пособие для техникумов. - 3-е изд., перераб. - Л.: Химия, 1985. - 408 с.
Дополнительная литература:

1. Брагинский О.Б., Шлихтер Э.Б. Мировая нефтепереработка: экологическое измерение. М.: Academia, 2002. – 262 с.