Файл: Управляемые выпрямители устройство, схемы, принцип работы.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.02.2024
Просмотров: 26
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Управляемые выпрямители - устройство, схемы, принцип работы
Для регулировки выходного напряжения в цепях переменного тока с выпрямлением применяют управляемые выпрямители. Наряду с другими способами управления выходным напряжением после выпрямителя, такими как ЛАТР или реостат, управляемый выпрямитель позволяет добиться большего КПД при высокой надежности схемы, чего нельзя сказать ни о регулировании при помощи ЛАТРа, ни о реостатном регулировании.
Использование управляемых вентилей более прогрессивно и гораздо менее громоздко. Лучше всего на роль управляемых вентилей подходят тиристоры.
В исходном состоянии тиристор заперт, а возможных устойчивых состояний у него два: закрытое и открытое (проводящее). Если напряжение источника выше нижней рабочей точки тиристора, то при подаче на управляющий электрод импульса тока, тиристор перейдет в проводящее состояние, а следующие импульсы, подаваемые на управляющий электрод никак не отразятся на анодном токе, то есть цепь управления отвечает только за открывание тиристора, но не за его запирание. Можно утверждать, что тиристоры обладают значительным коэффициентом усиления по мощности.
Для выключения тиристора необходимо снизить его анодный ток, чтобы он стал меньше тока удержания, что достигается путем понижения напряжения питания или увеличением сопротивления нагрузки.
Тиристоры в открытом состоянии способны проводить токи до нескольких сотен ампер, но при этом тиристоры довольно инерционны. Время включения тиристора составляет от 100 нс до 10 мкс, а время выключения в десять раз больше — от 1 мкс до 100 мкс.
Чтобы тиристор работал надежно, скорость нарастания анодного напряжения не должна превышать 10 — 500 в/мкс, в зависимости от модели компонента, иначе может произойти ложное включение за счет действия емкостного тока через p-n переходы.
Чтобы избежать ложных включений, управляющий электрод тиристора всегда шунтируют резистором, сопротивление которого обычно лежит в диапазоне от 51 до 1500 Ом.
Помимо тиристоров для регулирования выходного напряжения в выпрямителях используют и другие полупроводниковые приборы: симисторы, динисторы и запираемые тиристоры. Динисторы включаются по напряжению, приложенному к аноду, и имеют они два электрода, как диоды.
Симисторы отличаются возможностью включения управляющими импульсами хоть относительно анода, хоть — относительно катода, однако все эти приборы, как и тиристоры, выключаются снижением анодного тока до значения ниже тока удержания. Что касается запираемых тиристоров, то они могут запираться подачей на управляющий электрод тока обратной полярности, однако коэффициент усиления при выключении в десять раз ниже, чем при включении.
Тиристоры, симисторы, динисторы, управляемые тиристоры, - все эти приборы используются в источниках питания и в схемах автоматики для регулирования и стабилизации напряжения и мощности, а также для целей защиты.
Как правило, в схемы управляемого выпрямления вместо диодов ставят именно тиристоры. В однофазных мостах точка включения диода и точка включения тиристора отличаются, имеет место разность фаз между ними, которую можно отразить рассмотрев угол.
Постоянная составляющая напряжения на нагрузке нелинейно связана с этим углом, поскольку напряжение питания изначально синусоидальное. Постоянная составляющая напряжения на нагрузке, подключенной после регулируемого выпрямителя может быть найдена по формуле:
Регулировочная характеристика тиристорного управляемого выпрямителя показывает зависимость выходного напряжения на нагрузке от фазы (от угла) включения моста:
На нагрузке индуктивного характера ток через тиристоры будет иметь прямоугольную форму, и при угле больше нуля будет происходить затягивание тока в связи с действием ЭДС самоиндукции от индуктивности нагрузки.
При этом основная гармоника сетевого тока будет сдвинута относительно напряжения на некоторый угол. Чтобы исключить затягивание применяют нулевой диод, через который ток может замыкаться и давать сдвиг меньше в два раза по отношению к углу включения моста.
Чтобы сократить количество полупроводников, прибегают к схеме несимметричного управляемого выпрямителя, где пара диодов заменяет собой нулевой диод, и результат получается тем же.
Схемы с вольтодобавкой также допускают применение тиристоров. Такие схемы позволяют достичь большего КПД. Минимальное напряжение дают диоды, а повышенное подается через тиристоры. В случае наивысшего потребления диоды все время закрыты, а угол включения тиристоров все время 0. Недостаток схемы — потребность в дополнительной обмотке трансформатора.
Однофазные выпрямители - схемы и принцип действия
В ыпрямитель — это устройство, предназначенное для преобразования входною переменного напряжения в постоянное. Основным блоком выпрямителя является вен пильный комплект, который непосредственно выполняет преобразования переменного напряжения в постоянное.
При необходимости согласования параметров сети с параметрами нагрузки, выпрямительный комплект подключается к сети через согласующий трансформатор. По числу фаз питающей сети выпрямители бывают однофазные и трехфазные. Подробнее смотрите здесь - Классификация полупроводниковых выпрямителей. В этой статье рассмотрим работу однофазных выпрямителей.
Однофазный однополупериодный выпрямитель
Простейшей схемой выпрямителя является однофазный однополупериодный выпрямитель (рис. 1).
Рис. 1. Схема однофазного управляемого однополупериодного выпрямителя
Диаграммы работы выпрямителя на R-нагрузку показаны на рисунке 2.
Рис. 2. Диаграммы работы выпрямителя на R-нагрузку
Для того, чтобы открыть тиристор, необходимо выполнение двух условий:
1) потенциал анода должен быть выше потенциала катода;
2) на управляющий электрод должен быть подан открывающий импульс.
Для данной схемы одновременное выполнение этих условий возможно лишь в положительные полупериоды питающего напряжения. Система импульсно-фазового управления (СИФУ) должна формировать открывающие импульсы лишь в положительные полунериоды питающего напряжения.
При подаче на тиристор VS1 открывающего импульса в момент времени θ = α тиристор VS1 открывается и к нагрузке прикладывается напряжение питания U1 в течение оставшейся части положительного полупериода (прямое падение напряжения на вентиле ΔUв пренебрежимо мало по сравнению с напряжением U1 (ΔUв = 1 - 2 В)). Поскольку нагрузка R - активная, то ток в нагрузке повторяет форму напряжения.
В конце положительного полупериода ток нагрузки i и вентиля VS1 уменьшатся до нуля (θ = nπ), а напряжение U1 изменит свой знак. Таким образом, к тиристору VS1 прикладывается обратное напряжение, под действием которого он закрывается и восстанавливает свои управляющие свойства.
Такая коммутация вентиля под действием напряжения источника питания, периодически изменяющего свою полярность, называется естественной.
Из диаграмм видно, что изменение а приводит к изменению части положительного полупериода, в течение которого напряжение питания приложено к нагрузке, и, следовательно, это приводит к регулированию потребляемой мощности. Угол α характеризует задержку момента открывания тиристора по отношению к моменту его естественного открывания и называется углом открывания (управления) вентиля.
ЭДС выпрямителя и ток представляют собой следующие друг за другом отрезки положительных полусинусоид, постоянных по направлению, но непостоянных по величине, т.е. выпрямленные ЭДС и ток имеют периодический пульсирующий характер. А каждую периодическую функцию можно разложить в ряд Фурье:
e(t) = E + en(t),
где Е — постоянная составляющая выпрямленной ЭДС, en(t) — переменная составляющая, равная сумме всех гармонических составляющих.
Таким образом, можно считать, что к нагрузке приложено постоянная ЭДС искаженная переменной составляющей en(t). Постоянная составляющая ЭДС Е является основной характеристикой выпрямленной ЭДС.
Процесс регулирования напряжения на нагрузке путем изменения называется фазовым регулированием. Данная схема имеет ряд недостатков:
1) высокое содержание высших гармонических в выпрямленной ЭДС;
2) большие пульсации ЭДС и тока;
3) прерывистый режим работы схемы;
4) низкий коэффициент использования схемы по напряжению (kсхе =0,45).
Режимом прерывистого тока работы выпрямителя называется такой режим, при котором ток в цепи нагрузки выпрямителя прерывается, т.е. становится равным нулю.
Однофазный однонополупериодный выпрямитель при работе на активно-индуктивную нагрузку
Временные диаграммы работы однополупериодного выпрямителя на RL-нагрузку представлены на рис. 3.
Рис. 3. Диаграммы работы однополупериодного выпрямителя на RL-нагрузку
Для анализа процессов, протекающих в схеме, выделим три интервала времени.
1. α < θ < δ. Схема замещения, соответствующая этому интервалу, приведена на рис. 4.
Рис. 4. Схема замещения при α < θ < δ
Согласно схеме замещения:
На этом интервале времени eL (ЭДС самоиндукции) направлена встречно напряжению сети U1 и препятствует резкому нарастанию тока. Энергия из сети преобразуется в тепловую на R и накапливается в электромагнитном поле индуктивности L.
2. α < θ < π. Схема замещения, соответствующая этому интервалу, приведена на рис. 5.