Добавлен: 28.04.2024
Просмотров: 34
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
SCSI, который быстро завоевал популярность на рынке серверов.
Простое и дешевое решение - переложить значительную часть операций по вводу-выводу на центральный процессор. У этого решения вполне очевидный недостаток: снижение общей вычислительной мощности системы, особенно заметное при многозадачной работе. Результатом этого подхода явился интерфейс IDE.
Тем самым на сегодня мы имеем два типа дисков: высокопроизводительные SCSI и «ширпотреб» - IDE (PATA, SATA). Принципиальных различий в устройстве самих винчестеров SCSI и IDE нет, но исторически сложилось, что SCSI рассчитан на сегмент дорогих серверных решений, поэтому в среднем они быстрее и, как следствие, существенно дороже.
SCSI (Small Computer System Interface – интерфейс малых компьютерных систем, произносится как скази) — интерфейс, разработанный для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры, сканеры, принтеры и т. д. Теоретически возможен выпуск устройства любого типа на шине SCSI.
SCSI широко применяется на серверах, высокопроизводительных рабочих станциях.
Существует множество различных вариантов SCSI. В зависимости от варианта интерфейса скорость передачи данных может достигать 320 Мегабайт в секунду (используя интерфейс Ultra320 SCSI). На расстоянии 12 метров можно создать последовательную цепь из 15 устройств, подключенную к каналу SCSI.
Контроллер SCSI является по сути самостоятельным процессором и имеет свою собственную BIOS (которая иногда может размещаться в BIOS материнской платы). Он выполняет все операции по обслуживанию и управлению шиной SCSI, освобождая от этого центральный процессор.
Преимущество SCSI состоит в том, что несколько устройств могут пользоваться шиной одновременно, процессор компьютера при этом не загружается. Наиболее целесообразно использовать SCSI если требуется множественный доступ к различным областям дисков, запись/считывание данных небольшими (4-64 KB) блоками. К этой сфере относится работа с базами данных, различные варианты файл-серверов с большим количеством пользователей. Здесь требуются высокие скорости случайной (random) записи/чтения.
В настоящее время последовательная шина SAS (Serial Attached SCSI) постепенно вытесняет традиционную параллельную шину SCSI. SAS является последовательной шиной и разработан для замены параллельного интерфейса SCSI.
Для управления SAS-устройствами по-прежнему используются команды SCSI. SAS поддерживает передачу информации со скоростью до 3 Гбит/с (375МБ/с); ожидается, что скорость передачи достигнет 10 Гбит/с (1250 МБ/с).
Интерфейс SCSI использует общую шину. Таким образом, все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. Интерфейс SAS использует соединения точка-точка — каждое устройство соединено с контроллером собственным каналом.
SAS поддерживает большое количество устройств (теоретически до 16384), в то время как интерфейс SCSI поддерживает до 15.
В 90-е годы XX века интерфейс ATA (Advanced Technology Attachment, присоединение по передовой технологии) был стандартом для персональных компьютеров.
ATA это параллельный интерфейс подключения накопителей. В настоящее время он вытесняется своим последователем — SATA (Serial ATA) и с его появлением получил название PATA (Parallel ATA).
По маркетинговым соображениям этот же интерфейс получил название IDE (Integrated Drive Electronics, электроника, встроенная в привод).
За время существования было выпущено семь версий стандарта. Последние четыре имеют двойное название ATA-4 (Ultra ATA/33), ATA-5 (Ultra ATA/66), ATA-6 (Ultra ATA/100), ATA-7 (Ultra ATA/133). Числа в названии стандарта – это скорость передачи в МБ/сек. Если точнее то число указывает максимальную теоретически возможную скорость в кабеле, т.е. это просто два байта, умноженные на частоту (предполагается, что каждый цикл используется для передачи пользовательских данных). На практике скорость, естественно, меньше. В реальности не существует ATA-дисков, имеющих устойчивую скорость передачи выше 60 МБ/сек.
Для подключения жёстких дисков с интерфейсом PATA обычно используется плоский кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате, а один или два других подключаются к дискам. В один момент времени шлейф PATA передаёт 16 бит данных.
Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 появилась его 80-проводная версия. Все дополнительные проводники – это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки.
Стандарт ATA устанавливает максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах и исключает возможность использования дисков PATA в качестве внешних дисков.
Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master), а другое ведомым (англ. slave). Ведущее устройство всегда находится в конце шлейфа.
Теперь поясним те термины, которые используют при описании режимов работы винчестера.
PIO (Programmed Input/Output - программный ввод-вывод) - при работе в этом режиме, обменом информацией с жестким диска занимается центральный процессор системы. Это, соответственно отнимает какую-то часть процессорного времени.
DMA (Direct Memory Access - прямой доступ к памяти). При работе в этом режиме, обмен данными между диском и памятью компьютера осуществляется непосредственно контроллером винчестера. В данной технологии потоком данных управляет сам контроллер, считывая данные в память или из памяти почти без участия процессора, который выдаёт лишь команды на выполнение того или иного действия. Обращения производятся в паузах между обращениями центрального процессора к памяти. Такой режим экономит процессорное время, но несколько снижает скорость обмена.
Все современные версии ATA используют метод адресации LBA, однако система адресации по физическим адресам (CHS) дает более наглядную картину происходящего, поэтому все рассмотрение мы будем проводить, именно, отталкиваясь от способа адресации CHS. Итак, разберем, как именно производится чтение сектора с заданным адресом. (См. рис. 7)
Рисунок 7 Структура контроллера ATA.
По шине ATA в однокристальный микроконтроллер передается адрес сектора, который требуется прочитать (Cзад.,H зад.S зад.), после этого блоку магнитных головок (БМГ) выдается задание на чтение сектора.
Поступающие с магнитной головки сигналы являются аналоговыми (синусоидальными). Прочитанные сигналы поступают на PRML канал считывания. Он состоит из цифровых фильтров, реализованных цифровым сигнальным процессором. PRML канал опрашивает синусоидальный сигнал в нескольких точках и осуществляется сравнение принятого сигнала с некоторыми образцами. Таким образом производится декодирование сигнала.
Декодированный сигнал поступает на сепаратор данных. Сепаратор (разделитель) данных выделяет из входного потока сигналы синхронизации и данных.
Данные поступают в микроконтроллер диска. Информация, прочитанная из сектора, содержит как информацию, хранящуюся в прочитанном секторе, так и сервоинформацию (т.е. информацию о номере головки, цилиндра и текущего сектора на дорожке). Микроконтроллер выделяет из входного потока данных служебную информацию записанную в сервометках и информацию хранящуюся в прочитанном секторе. На основе прочитанной служебной информации контроллер узнает адрес прочитанного сектора (Cпроч., H проч., S проч..
). Далее микроконтроллер осуществляет согласование физической и логической геометрии диска (учет зонно-секционной записи, таблиц переназначения на резервный сектор, трансляции физических номеров головки, цилиндра и сектора).
Микроконтроллер сравнивает адрес прочитанного сектора (Cпроч., H проч., S проч.) с заданным (Cзад.,H зад.S зад.). Если головка находится не над требуемой дорожкой, формируются команды для управляющего микропроцессора. Микропроцессор распознает код команд, поступающих от микроконтроллера, и в соответствии с ним управляет работой привода головок и привода диска.
Если заданные и прочитанные адреса совпадают, т.е. нужный сектор найден, считанные данные поступают в буферную память, называемую также кэшем диска. Из буферной памяти данные по шине АТА передаются в память компьютера.
Как уже было отмечено, главным ограничением для достижения большой производительности при передаче данных для PATA является емкостная связь в 80-проводном кабеле при высоких скоростях передачи. Именно это привело к появлению в 2003 году стандарта Serial ATA («Последовательный ATA»)
SATA (Serial ATA) – последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA.
Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной. Несмотря на то, что последовательный способ обмена принципиально медленнее параллельного, в данном случае это компенсируется возможностью работы на более высоких частотах за счёт большей помехоустойчивости кабеля. Это достигается меньшим числом проводников и объединением информационных проводников в две витые пары, экранированные заземлёнными проводниками.
SATA использует 7-контактный разъём вместо 80/40-контактного разъема у PATA. Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель.
В зависимости от версии стандарта интерфейс обеспечивает пропускную способность приблизительно от 1,2 Гбит/с (150 МБ/с) для стандарта SATA/150 до 4,8 Гбит/с (600 МБ/с) для SATA 6Gb/s. (SATA 6Gb/s это название интерфейса, соответствующее ему полное правильное название спецификации — SATA Revision 3.0)
MBR (Master Boot Record) - Главная загрузочная запись, она находится в первом секторе диска и по сути является загрузочным сектором жесткого диска;
Простое и дешевое решение - переложить значительную часть операций по вводу-выводу на центральный процессор. У этого решения вполне очевидный недостаток: снижение общей вычислительной мощности системы, особенно заметное при многозадачной работе. Результатом этого подхода явился интерфейс IDE.
Тем самым на сегодня мы имеем два типа дисков: высокопроизводительные SCSI и «ширпотреб» - IDE (PATA, SATA). Принципиальных различий в устройстве самих винчестеров SCSI и IDE нет, но исторически сложилось, что SCSI рассчитан на сегмент дорогих серверных решений, поэтому в среднем они быстрее и, как следствие, существенно дороже.
Интерфейс SCSI
SCSI (Small Computer System Interface – интерфейс малых компьютерных систем, произносится как скази) — интерфейс, разработанный для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры, сканеры, принтеры и т. д. Теоретически возможен выпуск устройства любого типа на шине SCSI.
SCSI широко применяется на серверах, высокопроизводительных рабочих станциях.
Существует множество различных вариантов SCSI. В зависимости от варианта интерфейса скорость передачи данных может достигать 320 Мегабайт в секунду (используя интерфейс Ultra320 SCSI). На расстоянии 12 метров можно создать последовательную цепь из 15 устройств, подключенную к каналу SCSI.
Контроллер SCSI является по сути самостоятельным процессором и имеет свою собственную BIOS (которая иногда может размещаться в BIOS материнской платы). Он выполняет все операции по обслуживанию и управлению шиной SCSI, освобождая от этого центральный процессор.
Преимущество SCSI состоит в том, что несколько устройств могут пользоваться шиной одновременно, процессор компьютера при этом не загружается. Наиболее целесообразно использовать SCSI если требуется множественный доступ к различным областям дисков, запись/считывание данных небольшими (4-64 KB) блоками. К этой сфере относится работа с базами данных, различные варианты файл-серверов с большим количеством пользователей. Здесь требуются высокие скорости случайной (random) записи/чтения.
В настоящее время последовательная шина SAS (Serial Attached SCSI) постепенно вытесняет традиционную параллельную шину SCSI. SAS является последовательной шиной и разработан для замены параллельного интерфейса SCSI.
Для управления SAS-устройствами по-прежнему используются команды SCSI. SAS поддерживает передачу информации со скоростью до 3 Гбит/с (375МБ/с); ожидается, что скорость передачи достигнет 10 Гбит/с (1250 МБ/с).
Интерфейс SCSI использует общую шину. Таким образом, все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. Интерфейс SAS использует соединения точка-точка — каждое устройство соединено с контроллером собственным каналом.
SAS поддерживает большое количество устройств (теоретически до 16384), в то время как интерфейс SCSI поддерживает до 15.
Интерфейс ATA (PATA, SATA)
В 90-е годы XX века интерфейс ATA (Advanced Technology Attachment, присоединение по передовой технологии) был стандартом для персональных компьютеров.
ATA это параллельный интерфейс подключения накопителей. В настоящее время он вытесняется своим последователем — SATA (Serial ATA) и с его появлением получил название PATA (Parallel ATA).
По маркетинговым соображениям этот же интерфейс получил название IDE (Integrated Drive Electronics, электроника, встроенная в привод).
Версии стандарта ATA, скорость передачи и свойства
За время существования было выпущено семь версий стандарта. Последние четыре имеют двойное название ATA-4 (Ultra ATA/33), ATA-5 (Ultra ATA/66), ATA-6 (Ultra ATA/100), ATA-7 (Ultra ATA/133). Числа в названии стандарта – это скорость передачи в МБ/сек. Если точнее то число указывает максимальную теоретически возможную скорость в кабеле, т.е. это просто два байта, умноженные на частоту (предполагается, что каждый цикл используется для передачи пользовательских данных). На практике скорость, естественно, меньше. В реальности не существует ATA-дисков, имеющих устойчивую скорость передачи выше 60 МБ/сек.
Для подключения жёстких дисков с интерфейсом PATA обычно используется плоский кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате, а один или два других подключаются к дискам. В один момент времени шлейф PATA передаёт 16 бит данных.
Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 появилась его 80-проводная версия. Все дополнительные проводники – это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки.
Стандарт ATA устанавливает максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах и исключает возможность использования дисков PATA в качестве внешних дисков.
Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master), а другое ведомым (англ. slave). Ведущее устройство всегда находится в конце шлейфа.
Теперь поясним те термины, которые используют при описании режимов работы винчестера.
PIO (Programmed Input/Output - программный ввод-вывод) - при работе в этом режиме, обменом информацией с жестким диска занимается центральный процессор системы. Это, соответственно отнимает какую-то часть процессорного времени.
DMA (Direct Memory Access - прямой доступ к памяти). При работе в этом режиме, обмен данными между диском и памятью компьютера осуществляется непосредственно контроллером винчестера. В данной технологии потоком данных управляет сам контроллер, считывая данные в память или из памяти почти без участия процессора, который выдаёт лишь команды на выполнение того или иного действия. Обращения производятся в паузах между обращениями центрального процессора к памяти. Такой режим экономит процессорное время, но несколько снижает скорость обмена.
Принцип работы контроллера ATA
Все современные версии ATA используют метод адресации LBA, однако система адресации по физическим адресам (CHS) дает более наглядную картину происходящего, поэтому все рассмотрение мы будем проводить, именно, отталкиваясь от способа адресации CHS. Итак, разберем, как именно производится чтение сектора с заданным адресом. (См. рис. 7)
Рисунок 7 Структура контроллера ATA.
По шине ATA в однокристальный микроконтроллер передается адрес сектора, который требуется прочитать (Cзад.,H зад.S зад.), после этого блоку магнитных головок (БМГ) выдается задание на чтение сектора.
Поступающие с магнитной головки сигналы являются аналоговыми (синусоидальными). Прочитанные сигналы поступают на PRML канал считывания. Он состоит из цифровых фильтров, реализованных цифровым сигнальным процессором. PRML канал опрашивает синусоидальный сигнал в нескольких точках и осуществляется сравнение принятого сигнала с некоторыми образцами. Таким образом производится декодирование сигнала.
Декодированный сигнал поступает на сепаратор данных. Сепаратор (разделитель) данных выделяет из входного потока сигналы синхронизации и данных.
Данные поступают в микроконтроллер диска. Информация, прочитанная из сектора, содержит как информацию, хранящуюся в прочитанном секторе, так и сервоинформацию (т.е. информацию о номере головки, цилиндра и текущего сектора на дорожке). Микроконтроллер выделяет из входного потока данных служебную информацию записанную в сервометках и информацию хранящуюся в прочитанном секторе. На основе прочитанной служебной информации контроллер узнает адрес прочитанного сектора (Cпроч., H проч., S проч..
). Далее микроконтроллер осуществляет согласование физической и логической геометрии диска (учет зонно-секционной записи, таблиц переназначения на резервный сектор, трансляции физических номеров головки, цилиндра и сектора).
Микроконтроллер сравнивает адрес прочитанного сектора (Cпроч., H проч., S проч.) с заданным (Cзад.,H зад.S зад.). Если головка находится не над требуемой дорожкой, формируются команды для управляющего микропроцессора. Микропроцессор распознает код команд, поступающих от микроконтроллера, и в соответствии с ним управляет работой привода головок и привода диска.
Если заданные и прочитанные адреса совпадают, т.е. нужный сектор найден, считанные данные поступают в буферную память, называемую также кэшем диска. Из буферной памяти данные по шине АТА передаются в память компьютера.
Serial ATA
Как уже было отмечено, главным ограничением для достижения большой производительности при передаче данных для PATA является емкостная связь в 80-проводном кабеле при высоких скоростях передачи. Именно это привело к появлению в 2003 году стандарта Serial ATA («Последовательный ATA»)
SATA (Serial ATA) – последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA.
Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной. Несмотря на то, что последовательный способ обмена принципиально медленнее параллельного, в данном случае это компенсируется возможностью работы на более высоких частотах за счёт большей помехоустойчивости кабеля. Это достигается меньшим числом проводников и объединением информационных проводников в две витые пары, экранированные заземлёнными проводниками.
SATA использует 7-контактный разъём вместо 80/40-контактного разъема у PATA. Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель.
В зависимости от версии стандарта интерфейс обеспечивает пропускную способность приблизительно от 1,2 Гбит/с (150 МБ/с) для стандарта SATA/150 до 4,8 Гбит/с (600 МБ/с) для SATA 6Gb/s. (SATA 6Gb/s это название интерфейса, соответствующее ему полное правильное название спецификации — SATA Revision 3.0)
ТЕРМИНЫ ПО ЖЕСТКОМУ ДИСКУ
MBR (Master Boot Record) - Главная загрузочная запись, она находится в первом секторе диска и по сути является загрузочным сектором жесткого диска;