Файл: Самостоятельная работа по учебной дисциплине Биологические основы психофизического развития.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 17.10.2024
Просмотров: 18
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Министерство образования Республики Беларусь
Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»
Институт инклюзивного образования
Управляемая самостоятельная работа
по учебной дисциплине
«Биологические основы психофизического развития»
Геном человека
Подготовила:
студентка группы 280422
Порошкова Александра Андреевна
Проверил:
Доцент В.Ф Черник
Минск 2022
Оглавление
Введение 3
1. Особенности 5
1.1. Хромосомы 5
1.2. Гены 6
1.3. Прочие объекты в геноме 8
2.Проект "Геном человека 9
Заключение 12
Список литературы 13
Введение
Историю развития генетики можно разделить на четыре основные эпохи.
Эпоха классической генетики (1900–1930 гг.) – период развития генной и хромосомной теории наследственности. Созданы теория гена, генная и хромосомная теория наследственности, разработано учение о взаимодействии генов, фенотипе и генотипе.
Зарождение генетики как науки произошло в 1900 г., когда ботаники (голландец Гуго де Фриз, немец К. Корренс и австриец К. Чермак) независимо друг от друга заново открыли законы Менделя и подтвердили важнейшие закономерности наследования признаков, установленные в 1865 г. чешским исследователем Г. Менделем.
1930–1940 гг. – период индуцированного мутагенеза (получение мутаций с помощью радиации и химических веществ).
Эпоха новой классической генетики (1940–2000 гг.) – молекулярной генетики и экспериментального мутагенеза. Создана молекулярная (биохимическая) генетика, и доказано, что молекулы ДНК являются основой, в которой содержится генетическая информация. Обнаружено, что ген – это сложная система, делимая на части; обоснованы принципы генетики популяций и эволюционной генетики. В этот период был открыт экспериментальный мутагенез – искусственное получение мутаций в генах и хромосомах с помощью радиации и химических веществ.
Эпоха синтетической генетики (с 2000 года по настоящее время) – генетической инженерии, генодиагностики и генотерапии. В этот период была расшифрована структура ДНК; установлено точное число хромосом у человека; получила дальнейшее развитие теория мутаций, получены новые данные в области молекулярной, экологической, иммунологической, медицинской генетики; разработаны основные положения генной инженерии – технологии получения рекомбинантных ДНК. Расшифровка генома человека (2001 г.) в этот период занимает центральное место в генетических исследованиях. Развитие и использование на практике всех вышеперечисленных направлений генетики обеспечило синтетический подход к изучению проблемы наследственности.
Генетика в настоящее время представлена большим количеством разделов, таких как: цитогенетика, молекулярная генетика, популяционная генетика, генетика человека, медицинская, клиническая, радиационная и др. Цитогенетика занимается изучением хромосом на микроскопическом, субмикроскопическом, молекулярном уровнях. Молекулярная генетика – наука, изучающая закономерности и молекулярные механизмы хранения, воспроизведения и передачи наследственных признаков.
Генетика человека изучает закономерности наследования нормальных и патологических признаков, а также роль генотипа и факторов внешней среды в их проявлении. Человек является специфическим объектом генетического исследования. Изучение генетики человека связано с рядом особенностей:
-
сложный кариотип (много хромосом и групп сцепления); однако возможно идентифицировать хромосомы человека после их дифференциальной окраски; -
позднее половое созревание и редкая смена поколений; -
малое количество потомков; -
невозможность экспериментирования (вмешательства в формирование брачных пар); -
невозможность создания одинаковых условий жизни.
В конце ХХ в. были достигнуты успехи в области молекулярной и медицинской генетики. Расшифровка генома человека в 2002 г. привела к возникновению на основе молекулярной генетики нового направления науки – молекулярной медицины. В его основе лежат научные доказательства того, что геном человека строго индивидуален, то есть в ДНК каждого человека возможна замена нуклеотидных последовательностей (полиморфизм генов), обусловливающих изменения в структуре и функции. Этим объясняется индивидуальная реакция организма на воздействие факторов окружающей среды. В настоящее время уже идентифицированы мутантные гены практически всех моногенных и многих мультифакториальных заболеваний, разработаны методы их диагностики, активно разрабатываются методы тестирования наследственной предрасположенности к различным заболеваниям.
Медицинская генетика – составная часть генетики человека, изучающая роль наследственности в патологии, закономерности передачи наследственной болезни, методы диагностики, профилактики и лечения наследственных болезней. Особым разделом медицинской генетики является клиническая генетика, изучающая вопросы патогенеза (механизмы развития), клиники (основные симптомы), диагностики, профилактики и лечения наследственных болезней
1. Особенности
1.1. Хромосомы
Геном человека — геном биологического вида Homo sapiens. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две — X-хромосома и Y-хромосома — определяют пол (XY — у мужчин или ХХ — у женщин). Хромосомы в общей сложности содержат приблизительно 3 миллиарда пар оснований нуклеотидов ДНК, образующих 20000—25000 генов. В ходе выполнения проекта «Геном человека» содержимое хромосом находящихся в стадии интерфаза в клеточном ядре (вещество эухроматин), было выписано в виде последовательности символов. В настоящее время эта последовательность активно используется по всему миру в биомедицине. В ходе исследований выяснилось, что человеческий геном содержит значительно меньшее число генов, нежели ожидалось в начале проекта. Только для 1,5 % всего материала удалось выяснить функцию, остальная часть составляет так называемую мусорную ДНК. [2] В эти 1,5 % входят гены, которые кодируют РНК и белки, а также их регуляторные последовательности, интроны и, возможно, псевдогены).
1.2. Гены
По результатам проекта Геном человека, количество генов в геноме человека составляет около 28000 генов. Начальная оценка была более чем 100 тысяч генов. В связи с усовершенствованием методов поиска генов (предсказание генов) предполагается дальнейшее уменьшение числа генов.
Ген (от греческого genos – происхождение) представляет собой мельчайшую единицу наследственности, которая обеспечивает преемственность в потомстве того или иного элементарного признака организма. У высших организмов ген входит в состав особых нитевидных образований – хромосом, находящихся в нутрии ядра клетки. Совокупность всех генов организма составляет его геном. В геноме человека насчитывается около ста тысяч генов. По своим химическим характеристикам ген представляет собой участок молекулы ДНК (у некоторых вирусов РНК), в определенной структуре которого закодирована та или иная наследственная информация. Каждый ген содержит некоторый рецепт, который обеспечивает соответствующий синтез определенного белка, и таким образом совокупность генов управляет всеми химическими реакциями организма и определяет все его признаки. Важнейшим свойством гена является сочетание высокой устойчивости, неизменяемости в ряду поколений со способностью к наследуемым изменениям –
мутациям, которые являются источником изменчивости организмов и основой для действия естественного отбора.
По своему уровню ген – внутриклеточная молекулярная структура, а по назначению – «мозговой центр» клетки и всего организма. Один и тот же ген может влиять на формирование ряда признаков организма (множественное действие генов), это характерно для большинства генов. Выражение ген зависит также от внешних условий, влияющих на все процессы реализации генотипа в фенотип.
Ген представляет собой элементарную единицу функции наследственного материала. Это означает, что фрагмент молекулы ДНК, соответствующий отдельному гену и определяющий, благодаря содержащейся в нем биологической информации, возможность развития конкретного признака, является далее неделимым в функциональном отношении.
Под признаком понимают единицу морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности (прерывности) организмов, т.е. отдельное качество или свойство, по которому они отличаются друг от друга. Большинство особенностей организмов или клеток относится к категории сложных признаков, формирование которых требует синтеза многих веществ, в первую очередь, белков со специфическими свойствами - ферментов, иммунопротеинов, структурных, сократительных, транспортных и других белков.
Проще говоря, единственный вид молекул в клетке, которые гарантируют нашу индивидуальность, - это ДНК. В основе человека, как и любого другого организма, лежат два набора генов. Один из них передается по наследству от матери, другой - от отца. Каждый набор генов содержит информацию о видовой принадлежности (в данном случае, что мы - люди, а не животные), расовой, национальной и индивидуальной. В процессе развития человека его набор генов (генотип) взаимодействует со средой, в результате реализуется фенотип, то есть внешний вид человека. Гены в клетках всех организмов, включая человека, не только хранят информацию, но и работают: удваиваются, меняют свое расположение в хромосомах (рекомбинируют). И хотя все эти процессы протекают удивительно аккуратно и точно
, тем не менее, иногда происходят ошибки - мутации. Все это лежит в основе нормальной естественной изменчивости генетического аппарата клеток.
Основой генетике стали законы передачи наследственной информации, открытые чешским ученым Менделем. Эти закономерности были им обнаружены при проведении множества опытов по скрещиванию различных сортов гороха и четко сформулированы в 1865 году. Мендель пришёл к заключению, что каждый признак организмов должен определяться наследственными факторами, передающимися от родителей потомкам с половыми клетками, и что эти факторы при скрещиваниях не дробятся, а передаются как нечто целое и независимо друг от друга. После менделевского обнаружения существования наследственных факторов, впоследствии названных генами, появилась новая наука – генетика, которая как раз на это и опирается.
Интересно, что число генов человека не намного превосходит число генов у более простых модельных организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.
Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бандами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.
Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.
1.3. Прочие объекты в геноме
Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся: