Файл: Коды ошибок Postgresql.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.10.2024

Просмотров: 81

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Коды ошибок PostgreSQL.

Поддержка даты и времени.

1. Интерпретация данных даты и времени.

2. Ключевые слова для обозначения даты и времени.

3. Файлы конфигурации даты/времени.

4. История единиц измерения времени.

Ключевые слова SQL.

Соответствие стандарту SQL.

Замечания к выпуску.

 Дополнительно поставляемые модули.

Дополнительно поставляемые программы.

1. Клиентские приложения

2. Серверные приложения.

Внешние проекты.

Репозиторий исходного кода.

Документация.

DocBook

Инструментарий

Сборка документации Завершив все подготовительные действия, перейдите в каталог doc/src/sgml и запустите одну из команд сборки, описанных в следующих подразделах. (Помните, что для сборки нужно использовать GNU make.)HTMLЧтобы собрать HTML-версию документации:doc/src/sgml$ make htmlЭта цель сборки также выбирается по умолчанию. Результат помещается в подкаталог html.Чтобы получить HTML-документацию со стилем оформления, используемым на сайте postgresql.org, вместо простого стандартного стиля, выполните:doc/src/sgml$ make STYLE=website htmlСтраницы man Для преобразования страниц DocBook refentry в формат *roff, подходящий для страниц man, мы используем стили DocBook XSL. Страницы man также распространяются в архиве tar, подобно HTML-версии. Чтобы создать страницы man, выполните:doc/src/sgml$ make manPDFЧтобы получить документацию в формате PDF, используя FOP, выполните одну из следующих команд, в зависимости от предпочитаемого размера бумаги:Для формата A4: doc/src/sgml$ make postgres-A4.pdf Для формата U.S. letter: doc/src/sgml$ make postgres-US.pdf Так как документация PostgreSQL весьма объёмна, процессору FOP для её обработки требуется много памяти. Поэтому в некоторых системах сборка может прерваться ошибкой, связанной с памятью. Обычно это можно исправить, увеличив объём области кучи Java в файле конфигурации /.foprc, например:# Бинарный пакет FOPFOP_OPTS='-Xmx1500m'# DebianJAVA_ARGS='-Xmx1500m'# Red HatADDITIONAL_FLAGS='-Xmx1500m'Некоторый объём памяти является минимально необходимым, а если задать больший объём, возможно даже некоторое ускорение сборки. В системах с очень маленьким объёмом памяти (меньше 1 ГБ) сборка либо будет слишком медленной из-за подкачки, либо вообще не будет осуществляться.Также можно воспользоваться другими процессорами XSL-FO, запуская их вручную, но автоматическая процедура сборки поддерживает только FOP.Простые текстовые файлы Инструкции по установке также распространяются в виде обычного текста, на случай, если они понадобятся в ситуации, когда под рукой не окажется средств просмотра более удобного формата. Файл INSTALL соответствует Главе 16, с небольшими изменениями, внесёнными с учётом другого контекста. Чтобы пересоздать этот файл, перейдите в каталог doc/src/sgml и введите make INSTALL.В прошлом примечания к выпуску и инструкции по регрессионному тестированию также распространялись в виде простых текстовых файлов, но эта практика была прекращена.Проверка синтаксиса Сборка всей документации может занять много времени. Но если нужно проверить только синтаксис файлов документации, это можно сделать всего за несколько секунд:doc/src/sgml$ make checkНаписание документации Форматы SGML и DocBook не страдают от обилия средств их редактирования с открытым исходным кодом. Чаще всего для написания документации используется редактор Emacs/XEmacs в подходящем режиме. В некоторых системах эти редакторы устанавливаются при типичной полной установке.Emacs/PSGMLРежим PSGML — наиболее популярный и мощный режим редактирования документов SGML. При правильной настройке в Emacs он позволяет вставлять теги и проверять корректность разметки. Его также можно использовать для редактирования HTML. Загружаемые файлы, инструкции по установке и подробную документацию вы можете найти на сайте PSGML.Необходимо отметить важный момент относительно PSGML: его автор предполагал, что вашим основным каталогом с DTD SGML будет /usr/local/lib/sgml. Если же у вас это каталог /usr/local/share/sgml, вам нужно дополнительно скорректировать предопределённый путь, либо воспользовавшись переменной окружения SGML_CATALOG_FILES, либо настроив соответственно вашу инсталляцию PSGML (как это сделать, можно узнать из его описания).Поместите следующие строки в файл 

Другие режимы Emacs.

Сокращения.

Недокументированные возможности.

Индексы.

Типы индексов.

Функциональные индексы.

Нетривиальное использование таблиц.

Ограничения полей.

Добавление ограничений в существующую таблицу.

Использование производных таблиц.

Модификация производных таблиц.

Массивы.

Создание полей со значениями-массивами.

Вставка значений в поля-массивы.

Выборка из полей-массивов.

Индексы элементов

Определение количества элементов.

Обновление данных в полях-массивах

Автоматизация стандартных процедур.

Операции с последовательностями.

Удаление последовательности.

Создание триггера.

Получение информации о триггерах.

Транзакции и курсоры

Транзакционные блоки.

Использование курсоров.

Выборка из курсора. Выборка записей из курсора производится командой FETCH. Синтаксис команды FETCH:FETCH [ FORWARD BACKWARD | RELATIVE ][ число ALL | NEXT | PRIOR ]{ IN | FROM } курсорВ этом объявлении курсор – имя курсора, из которого производится выборка записей. Курсор всегда указывает па "текущую" позицию итогового набора выполненной команды, а в выборке могут участвовать записи, находящиеся до или после текущей позиции. Направление выборки определяется ключевыми словами FORWARD и BACKUARD, но умолчанию используется прямая выборка (FORWARD). Ключевое слово RELATIVE не обязательно и поддерживается лишь для совместимости со стандартом SQL92.ВниманиеВ команде также может использоваться ключевое слово ABSOLUTE, но в PostgreSQL 7.1.x возможности абсолютного позиционирования и выборки в курсорах не реализованы. Курсор использует относительное позиционирование и выводит сообщение о том, что абсолютное позиционирование не поддерживается.За ключевым словом, идентифицирующим направление, может указываться следующий аргумент – количество записей. Допускается указание конкретного числа записей (в виде целочисленной константы) или одного из нескольких ключевых слов. Ключевое слово ALL означает, что команда возвращает все записи, начиная с текущей позиции курсора. С ключевым словом NEXT (используется по умолчанию) команда возвращает следующую запись от текущей позиции курсора. С ключевым словом PRIOR возвращается запись, находящаяся перед текущей позицией курсора.Ключевые слова IN и FROM эквивалентны, из них в команде должно присутствовать одно.Перемещение курсора. Курсор поддерживает информацию о текущей позиции в итоговом наборе команды SELECT. Перемещение курсора к заданной записи выполняется командой MOVE. Синтаксис команды MOVE:MOVE [ FORWARD | BACKWARD | RELATIVE ][ число ALL | NEXT | PRIOR ]{ IN | FROM } курсорКак видно из приведенного объявления, синтаксис команды MOVE очень близок к синтаксису команды FETCH. Впрочем, команда MOVE никаких записей не возвращает и лишь перемещает текущую позицию курсора. Смещение задается целочисленной константой или ключевым словом ALL (перемещение в заданном направлении на максимально возможное расстояние), NEXT или PRIOR. Закрытие курсора. Команда CLOSE закрывает ранее открытый курсор. Курсор также автоматически закрывается при выходе из транзакционного блока, в котором он находится, при фиксации транзакции командой COMMIT или ее откате командой ROLLBACK. Синтаксис команды CLOSE (курсор – имя закрываемого курсора):CLOSE курсор.Расширение PostgreSQL. PostgreSQL не ограничивает пользователя встроенными функциями и операторами, позволяя ему создавать собственные расширения. Если вам приходится часто выполнять некоторую стандартную последовательность команд SQL или программных операций, пользовательские функции помогут решить эту задачу более надежно и эффективно. Также в PostgreSQL предусмотрена возможность определения операторов для вызова пользовательских (или встроенных) функций, что делает команды SQL понятнее и эффективнее.Функции и операторы тоже существуют как объекты базы данных и поэтому связываются с конкретной базой. Например, функция, созданная при подключении к базе данных booktown, доступна только для пользователей, также подключившихся к этой базе.Если некоторые общие функции или операторы должны использоваться в разных базах данных, создайте их в базе данных template 1. В этом случае объекты функций и операторов будут автоматически копироваться из шаблона template 1 при создании новой базы данных.В следующих подразделах рассматриваются операции создания, использования и удаления нестандартных функций и операторов.Создание новых функций Разновидность команды SQL99 CREATE FUNCTION, поддерживаемая в PostgreSQL, не обладает прямой совместимостью со стандартом, но зато обеспечивает широкие возможности для расширения PostgreSQL за счет создания пользовательских функций (за информацией о встроенных операторах и функциях обращайтесь к главе 5).Синтаксис команды CREATE FUNCTION:CREATE FUNCTION имя ([ тип_аргумента [….] ])RETURNS тип_возвращаемого_значенияAS 'определение'LANGUAGE 'язык'[ WITH (атрибут [….]) ]Здесь: CREATE FUNCTION имя ([ тпип_аргумента [,…] ]). После ключевых слов CREATE FUNCTION указывается имя создаваемой функции, после чего в круглых скобках перечисляются типы аргументов, разделенные запятыми. Если список в круглых скобках пуст, функция вызывается без аргументов (хотя сами круглые скобки обязательно должны присутствовать как в определении функции, так и при ее использовании). RETURNS тип_возвращаемого_значения. Тип данных, возвращаемый функцией. AS ' определение'. Программное определение функции. В процедурных языках (таких, как PL/pgSQL) оно состоит из кода функции. Для откомпилированных функций С указывается абсолютный системный путь к файлу, содержащему объектный код. LANGUAGE 'язык'. Название языка, на котором написана функция. В аргументе может передаваться имя любого процедурного языка (такого, как plpgsql или plperl, если соответствующая поддержка была установлена при компиляции), С или SQL. [ WITH (атрибут [….]) ]. В PostgreSQL 7.1.x аргумент атрибут может принимать два значения: iscachablen isstrict. iscachable. Оптимизатор может использовать предыдущие вызовы функций для ускоренной обработки будущих вызовов с тем же набором аргументов. Кэширование обычно применяется при работе с функциями, сопряженными с большими затратами ресурсов, но возвращающими один и тот же результат при одинаковых значениях аргументов. isstrict. Функция всегда возвращает NULL в случае, если хотя бы один из ее аргументов равен NULL. При передаче атрибута isstrict результат возвращается сразу, без фактического выполнения функции. ПримечаниеPostgreSQL позволяет перегружать функции, то есть присваивать одно имя нескольким функциям, отличающимся по типу аргументов. Перегрузка позволяет связать с одним именем функции несколько выполняемых операций в зависимости от количества и типа аргументов.Создание функций SQL. Из всех разновидностей функций в PostgreSQL проще всего создаются "чистые" функции SQL, поскольку их создание не требует ни знания других языков, ни серьезного опыта программирования. Функция SQL определяется как обычная команда с позиционными параметрами.Позиционный параметр представляет собой ссылку на один из аргументов, переданных при вызове функции SQL. Он называется позиционным, поскольку в ссылке указывается его позиция в списке переданных аргументов. Позиционный параметр состоит из знака $, за которым следует номер (нумерация начинается с 1). Например, $1 означает первый аргумент в переданном списке.Сообщение CREATE означает, что создание функции прошло успешно. Созданная функция доступна для всех пользователей, обладающих соответствующими правами. Создание функций на языке С. СУБД PostgreSQL, написанная на языке С, может динамически подгружать откомпилированный код С без перекомпиляции пакета. Использование команды CREATE FUNCTION для компоновки с функциями С разрешено только суперпользователям, поскольку эти функции могут содержать системные вызовы, представляющие потенциальную угрозу для безопасности системы.Документирование всего интерфейса API системы PostgreSQL выходит за рамки книги. Впрочем, опытный программист сможет очень легко написать, откомпилировать и скомпоновать простейшие функции С с использованием загружаемых общих модулей.У компилятора gcc (GNU С Compiler) имеется ключ – shared, предназначенный для создания динамически загружаемых модулей. В простейшем случае загружаемый модуль создается командой следующего вида:$ gcc – shared input.с – о output.soЗдесь input.с – имя файла, содержащего компилируемый код С, a output.so – файл общего загружаемого модуля.ВниманиеВ этот простейший пример не были включены заголовочные файлы PostgreSQL. В данном случае они не нужны из-за очевидного соответствия между типами данных С и SQL. Более реальные примеры с использованием внутреннего интерфейса API PostgreSQL и структур данных находятся во вложенном каталоге contrib исходного каталога PostgreSQL.По умолчанию PostgreSQL ищет в общем модуле функцию с тем же именем, с которым она создается в PostgreSQL. Такой способ подходит для функции is_zero(integer), имя которой соответствует откомпилированному символическому имени функции is_zero(int) в файле is_zero.so. Для предотвращения конфликтов имен вторая функция в общем объектном модуле определяется с сигнатурой is_zero_two(int.int). Чтобы ассоциировать ее с перегруженной функцией PostgreSQL, получающей два аргумента вместо одного, имя функции С в виде строковой константы передастся после пути к файлу общего модуля.Имя указывается без круглых скобок и без перечисления аргументов, а от пути к файлу оно отделяется запятой.Уничтожение функций. Функции уничтожаются владельцем или суперпользователем при помощи команды SQL DROP FUNCTION. Синтаксис команды DROP FUNCTION:DELETE FUNCTION имя ([ тип_аргумента [….] ]):Сообщение сервера DROP означает, что функция была успешно удалена. Команда DROP FUNCTION, как и большинство команд DROP, необратима, поэтому перед ее выполнением убедитесь в том, что функцию действительно требуется удалить.Создание новых операторов. Кроме пользовательских функций PoslgreSQL позволяет создавать пользовательские операторы. С технической точки зрения операторы всего лишь обеспечивают альтернативный синтаксис для вызова функций. Например, оператор сложения (+) в действительности вызывает одну из встроенных функций (numeri c_add() и т. д.). Пример:booktown=# SELECT I + 2 AS by_operator .numeric_add(l,2) AS by_function;by_operator [ by_function3 | 3(1 row)Определение оператора сообщает, к какому типу данных относятся левый и правый операнды. Кроме того, в определении указывается функция, которой при вызове в качестве аргументов передаются операнды.Создание оператора. Новые операторы создаются командой SQL CREATE OPERATOR. Синтаксис команды CREATE OPERATOR:CREATE OPERATOR оператор (PROCEDURE = функция[. LEFTARG = тип1 ][. RIGHTARG = тип2 ][. COMMUTATOR = коммутатор ][. NEGATOR = инвертор ][. RESTRICT = функция ограничения ][. JOIN = функция_обьединения ][. HASHES ][. SORT1 = левдя_сортировкд ][. SORT2 = правая_сортировка ])В этом определении оператор – символ нового оператора, а функция – имя функции, вызываемой этим оператором. Остальные секции не обязательны, хотя в определении должна присутствовать хотя бы одна из секций LEFTARG или RIGHTARG. Оператор может состоять из следующих символов:*-*/<>=

Перегрузка операторов

Удаление оператора


Индексы элементов


Популярность массивов в значительной степени обусловлена тем фактом, что к отдельным элементам можно обращаться при помощи индексов – целых чисел, заключенных в скобки и описывающих позицию искомого элемента в массиве.

В отличие от таких языков программирования, как С, в PostgreSQL индексация в массивах начинается с 1, а не с 0.

Обратите внимание: данные, возвращаемые запросом, не заключаются в кавычки или фигурные скобки. Это связано с тем, что отдельное текстовое значение должно возвращаться в виде одной текстовой константы, а не массива.

Срезы

В PostgreSQL также поддерживается возможность создания срезов при выборке из массива. Срез аналогичен обычному обращению к элементам по индексу, но он описывает интервал значений. Срез задается парой целочисленных индексов, разделенных двоеточием и заключенных в квадратные скобки. Например, конструкция [2:5] описывает второй, третий, четвертый и пятый элемент заданного массива. Результат среза возвращается в виде константы-массива, которая фактически описывает подмножество элементов исходного массива (впрочем, срез может содержать все элементы исходного массива).

В PostgreSQL 7.1.x использование срезов в многомерных массивах иногда приводит к непредсказуемым последствиям. По этой причине, пока не будут внесены исправления, при работе с многомерными массивами рекомендуется обращаться к элементам по конкретным значениям индексов.

Определение количества элементов.


Чтобы узнать количество значении, хранящихся в массиве, следует воспользоваться функцией array_dims(). В качестве параметра функции передается идентификатор – имя поля-массива, для которого вызывается функция. Результат возвращается в виде строки, содержащей описание массива в синтаксисе среза.

Обновление данных в полях-массивах


Существует три варианта модификации данных в полях-массивах.

  • Полная модификация. Все содержимое массива заменяется новыми данными, заданными в виде массива-константы.

  • Модификация среза. Срез (то есть интервальное подмножество элементов) заменяется новыми данными, заданными в виде массива-константы. Количество элементов в константе должно соответствовать количеству элементов в обновляемом срезе.

  • Модификация элемента. Отдельный элемент массива заменяется новой константой, относящейся к базовому типу данных массива. Элемент задается индексом. В первом случае количество элементов в новом массиве может не совпадать с количеством элементов в существующем массиве. Допустим, работник с кодом id=102 хочет добавить данные о новой книге в список, хранящийся в таблице favorite_books. 





Автоматизация стандартных процедур.


PostgreSQL является объектно-реляционной СУБД, что позволило включить в нее ряд нестандартных расширений SQL. Часть этих расширений связана с автоматизацией часто выполняемых операций с базами данных.

В этом разделе описаны две категории расширений: последовательности и триггеры.
  1. Последовательности


Последовательностью (sequence) в PostgreSQL называется объект базы данных, который фактически представляет собой автоматически увеличивающееся число. В других СУБД последовательности часто называются счетчиками. Последовательности очень часто используются для присваивания уникальных значении идентификаторов в таблицах. Последовательность определяется текущим числовым значением и набором характеристик, определяющих алгоритм автоматического увеличения (или уменьшения) используемых данных.

Наряду с текущим значением в определение последовательности также включается минимальное значение, максимальное значение и приращение. Обычно приращение равно 1, но оно также может быть любым целым числом.

На практике последовательности не рассчитаны на прямой доступ из программы. Работа с ними осуществляется через специальные функции PostgreSQL, предназначенные для увеличения, присваивания или получения текущего значения последовательности.

Создание последовательности


Последовательности создаются командой SQL CREATE SEQUENCE с положительным или отрицательным приращением. Синтаксис команды CREATE SEQUENCE:

CREATE SEQUENCE последовательность

[ INCREMENT приращение ]

[ MINVALUE минимум ]

[ MAXVALUE максимум ]

[ START начало ]

[ CACHE кэш ]

[ CYCLE ]

В этом определении единственный обязательный параметр последовательность определяет имя создаваемой последовательности. Значения последовательности.представляются типом Integer, поэтому максимальное и минимальное значения должны лежать в интервале от 2 147 483 647 до -2 147 483 647.

Ниже описаны необязательные секции команды CREATE SEQUENCE.

  • INCREMENT приращение. Числовое изменение текущего значения последовательности. Используется при вызове для последовательности функции nextval(). Отрицательное приращение создает убывающую последовательность. По умолчанию приращение равно 1.

  • MINVALUE минимум. Минимальное допустимое значение последовательности. Попытка уменьшить текущее значение ниже заданного минимума приведет к ошибке или циклическому переходу к максимальному значению (если последовательность создавалась с ключевым словом CYCLE). По умолчанию минимальное значение равно 1 для возрастающих последовательностей или -2 147 483 647 для убывающих последовательностей.

  • MAXVALUE максимум. Максимальное допустимое значение последовательности. Попытка увеличить текущее значение выше заданного максимума приведет к ошибке или циклическому переходу к минимальному значению. По умолчанию максимальное значение равно 2 147 483 647 для возрастающих последовательностей или -1 для убывающих последовательностей.

  • START начало. Начальное значение последовательности, которым является любое целое число в интервале между минимальным и максимальным значениями. По умолчанию последовательность начинается с нижнего порога для возрастающих последовательностей или с верхнего порога для убывающих последовательностей.

  • CACHE кэш. Возможность предварительного вычисления и хранения значений последовательности в памяти. Кэширование ускоряет доступ к часто используемым последовательностям. Минимальное значение, заданное по умолчанию, равно 1; увеличение объема кэша приводит к увеличению числа кэшируемых значений.

  • CYCLE. При достижении нижнего или верхнего порога последовательность продолжает генерировать новые значения. В этом случае она переходит к минимальному значению (для возрастающих последовательностей) или к максимальному значению (для убывающих последовательностей).




Просмотр последовательностей в базе данных


Команда \d клиента psql показывает, к какому типу относится тот или иной объект базы данных – последовательность, таблица, представление или индекс. Для получения более конкретной информации можно воспользоваться командой \ds, выводящей список всех последовательностей в текущей базе данных. Пример:

booktown=# \ds

List of relations Name Type | Owner

book_ids | sequence | manager

shipments_ship_id_seq j sequence | manager

subject_ids j sequence | manager

(3 rows)

К последовательности также можно обратиться командой SELECT, как к таблице или представлению (хотя такая возможность используется относительно редко). При составлении запроса к последовательности в списке выборки вместо полей указываются атрибуты последовательности, перечисленные в табл. 7.1.

Таблица 7.1. Атрибуты последовательностей.

Атрибут

Тип

sequence name

name

last_value

integer

increment by

integer

max value

integer

min value

integer

cache value

integer

log cnt

integer

is_cycled

"char"

is called

"char"



Операции с последовательностями.


Выборка атрибутов последовательности требуется относительно редко. Как правило, все операции с последовательностями выполняются при помощи трех специальных функций PostgreSQL.

  • nextval ('последовательность'). Увеличивает текущее значение заданной последовательности и возвращает новое значение в виде величины типа integer.

  • currval ('последовательность'). Возвращает значение, полученное при последнем вызове nextval (). Значение ассоциируется с определенным сеансом PostgreSQL, поэтому если функция nextval () еще не вызывалась для заданного подключения в текущем сеансе, функция не сможет вернуть значение.

  • setval ('последовательность' .n). Присваивает число п текущему значению заданной последовательности. Следующий вызов nextval () возвращает значение п+приращение, где приращение – изменение текущего значения последовательности при каждой итерации.

  • setval ('последовательность' .n .b). Также присваивает число п текущему значению заданной последовательности. Если параметр b (тип boolean) равен false, то следующий вызов nextval () вернет значение п, а если параметр равен true, то будет возвращено значение п+приращение, как при вызове функции setval () без дополнительного аргумента.

Чаще всего при работе с последовательностями используется функция nextval (), при вызове которой и происходит увеличение текущего значения. В качестве аргумента функция получает имя последовательности, заключенное в апострофы, а возвращает значение типа Integer.

Примечание
При первом вызове функция nextval () возвращает начальное значение последовательности (заданное с ключевым словом START). Причина – функция не вызывалась, поэтому приращение еще не произошло. При всех последующих вызовах nextval () атрибут last_value изменяется.

Последовательности часто используются при определении значений по умолчанию для таблиц, в которых должны храниться уникальные целочисленные идентификаторы.

Внимание
Простая установка ограничения DEFAULT не гарантирует его применения. Пользователь способен вручную задать любое значение, что может привести к потенциальному нарушению уникальности в будущем. Для предотвращения конфликтов можно воспользоваться триггером. За дополнительной информацией обращайтесь к подразделу "Триггеры" этого раздела