Файл: Динамика острого воспалительного процесса.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 16.11.2024

Просмотров: 78

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

     Как выяснено, вещества, к которым лейкоцит проявляет положительный хемотаксис, воздействуют на рецепторы его оболочки, в результате чего возникает сенсорный эффект - лейкоцит начинает "чувствовать", "ощущать" эти вещества.

     Особенно важное значение в контроле за хемотаксическим процессом имеют циклические нуклеотиды. Показано, что цГМФ повышает чувствительность лейкоцитов к хемотаксическому фактору и усиливает их движение. Противоположным действием обладает цАМФ.

     Вещества, к которым у лейкоцитов имеется положительный хемотаксис, меняют физико- химическое состояние их протоплазмы, переводя ее из состояния геля в состояние золя и обратно. Таким образом, какая-то часть протоплазмы лейкоцита становится жидкой и в нее постепенно переливается вся клетка.

     Перемещение фагоцита в пространстве осуществляется следующим образом.

     Установлено, что протоплазма фагоцита состоит из центрального жидкого слоя (золя) и более плотного наружного - кортикального геля. Под влиянием веществ, к которым лейкоцит обладает положительным хемотаксисом, на переднем полюсе лейкоцита кортикальный гель превращается в золь, то есть, становится более жидким. В эту "разжиженную" часть лейкоцита переливается золь его центральной части, в результате чего лейкоцит укорачивается сзади и удлиняется спереди. Этот процесс по аналогии можно сравнить с выдавливанием зубной пасты из тюбика с той лишь разницей, что и сам "тюбик" (оболочка лейкоцита) устремляется вслед за "пастой" (за протоплазмой).

     Существует и другой способ движения фагоцита. Микротрубочки цитоскелета в тот период, когда лейкоцит находится в спокойном состоянии, не имеют четкой ориентации, расположены хаотически и выполняют в основном опорную функцию. Когда же лейкоцит начинает двигаться, эти трубочки меняют свое расположение в цитоплазме и ориентируются точно по направлению движения. Разжиженная часть кортикального геля с переднего полюса лейкоцита засасывается в эти трубочки и с силой выбрасывается из них назад. Возникает реактивная тяга: сами трубочки начинают двигаться в противоположном направлении и толкают лейкоцит вперед. Другими словами, лейкоцит передвигается как ракета. И, наконец, исходя из наличия в лейкоците актин-миозиновой системы, можно предположить, что в нем происходят процессы, аналогичные мышечному сокращению, благодаря чему он и передвигается. Скорость движения лейкоцитов может быть довольно большой. Подсчитано, что за сутки лейкоцит может пройти 5 - 6 см, то есть "добраться" с периферии до центра очень большого по своим размерам воспалительного очага. Передвижение лейкоцитов является энергозависимым процессом, то есть идет с потреблением энергии, причем эту энергию лейкоцит получает от гликолитических реакций. Блокада процессов окислительного фосфорилирования соединениями синильной кислоты не останавливает движения фагоцитов, в то время как монойодацетат, угнетая гликолиз, тормозит этот процесс.[2]


     Третья стадия – опсонизация объектов фагоцитоза. Без прохождения этой стадии фагоцитоз не возможен. Опсонизация – это процесс взаимодействия опсонинов (иммуноглобулинов IgG1, IgG3, IgM, белков системы комплемента С3b, C4, C5a, С-реактивного белка) с рецепторным аппаратом инфекционной частицей. На фагоцитах есть рецепторы к Fc-фрагментам иммуноглобулинов и к белкам системы комплемента. В результате  инфекционные частицы плотно прикрепляются к оболочке фагоцитов, а иммуноглобулины, белки комплемента и С-реактивный белок служат как бы «мостиком», прочно соединяющим фагоцит и фагоцитируемый объект.  Кроме того, определенную роль в прикреплении («прилипании») фагоцита к фагоцитируемому объекту играют некоторые цитокины. Следует указать, что низкий уровень опсонинов в плазме крови, как правило, приводит к тяжелым, длительно текущим инфекционным заболеваниям.  

     Четвертая стадия - погружение объекта в фагоцит, которая может осуществляться двумя путями. Во-первых, фагоцит, подобно амебе, способен выпускать псевдоподии, которые смыкаются над объектом фагоцитоза, и он оказывается внутри фагоцита. Во-вторых, это погружение может происходить путем инвагинации клеточной оболочки фагоцита: в нем образуется все увеличивающаяся впадина, в которую и погружается объект; затем края впадины смыкаются над объектом, и он оказывается внутри фагоцитирующей клетки. Если же объект по своим размерам очень большой, то он окружается несколькими фагоцитами, которые внедряют в него сливающиеся друг с другом цитоплазматические отростки, и таким путем осуществляется совместный фагоцитоз несколькими фагоцитами одного объекта.

     В процессе погружения объекта в фагоцит важную роль играют электрические заряды объекта и фагоцита, интенсивность хемотаксиса и величина поверхностного натяжения в месте соприкосновения фагоцита и фагоцитируемого объекта. Чем ниже этот показатель, тем интенсивнее идет погружение. Поэтому опсонины и бактериотропины, снижающие поверхностное натяжение, способствуют интенсификации фагоцитирования микроорганизмов.

     Пятая стадия – переваривание. Вначале живой объект, попавший в фагоцит и находящийся в его пищеварительной вакуоли, должен быть убит. Живые объекты фагоцит не переваривает. Основную роль в гибели живых объектов, попавших в фагоцит, играет резкий сдвиг рН протоплазмы фагоцита в кислую сторону. После того, как объект убит, пищеварительная вакуоль, в которой он находится, сливается с одной или несколькими лизосомами фагоцита, и лизосомные ферменты осуществляют процесс пищеварения в этой полости.


     Живой объект может быть фагоцитирован и иным путем: в гранулах лейкоцита содержатся бактерицидные вещества (например, активные кислородные радикалы), которые выбрасываются в окружающую среду, и, таким образом, лейкоцит убивает микроорганизм. Затем осуществляется процесс его погружения и переваривания.

     Таковы процессы, лежащие в основе так называемого завершенного фагоцитоза. Однако фагоцитоз протекает по-иному, если микроорганизмы - объекты фагоцитоза либо обладают мощной полисахаридной капсулой (например, микобактерии туберкулеза), защищающей их от кислой реакции среды, либо выделяют вещества, которые препятствуют слиянию лизосом с пищеварительной вакуолью, в результате чего процесс внутриклеточного пищеварения не может быть осуществлен. В этом случае имеет место так называемый незавершенный фагоцитоз. Он заканчивается тем, что через некоторое время живые микроорганизмы либо выбрасываются из фагоцита, либо фагоцит гибнет. Аналогичная ситуация может возникать при некоторых генетически обусловленных дефектах фагоцитарной системы, о чем более подробно рассказывается в разделе учебника, посвященном иммунодефицитным состояниям.


3.2.3. Пролиферация

     Острое воспаление завершается фазой пролиферации, хотя пролиферативные процессы в той или иной степени выражены с самого начала воспалительного процесса. Однако интенсивная пролиферация начинается только тогда, когда полностью завершается альтерация и экссудация, а патогенный агент уничтожен или выведен за пределы организма. В противном случае (если патогенный агент не уничтожен) острое воспаление может трансформироваться в хроническое.

     Фазе активной пролиферации предшествует период, когда в очаге воспаления начинают вступают в действие противовоспалительные медиаторы. К их числу относятся уже известные нам противовоспалительные цитокины, а также ряд других противовоспалительных биологически активных веществ. Основное место среди них занимают:

     - гепарин, который связывает биогенные амины, ингибирует комплемент, является мощным антикоагулянтом, инактивирует кининовые системы;

     - ингибиторы протеаз – вещества, подавляющие активность лизосомальных гидролаз и, тем самым, резко снижающие повреждение клеток и тканей;

     -  антифосфолипазы, ингибирующие фосфолипазу А2  и за счет этого уменьшающие синтез арахидоновой кислоты и ее продуцентов – простагландинов и простациклинов. Следует указать, что выработка антифосфолипаз стимулируется глюкокортикоидными гормонами;

     - антиоксиданты – металлосодержащие белки, инактивирующие кислородные радикалы и липоперекиси;

     - инактиваторы воспалительных медиаторов, например, гистаминаза и кининаза, разрушающие гистамин и кинины.

     В целом, противовоспалительные биологически активные вещества обеспечивают затухание процессов альтерации и экссудации и, тем самым, создают максимально благоприятную ситуацию для запуска механизмов активной пролиферации и репарации.

     Репаративные процессы могут идти по двум направлениям: по пути регенерации (замещение погибших клеток клетками точно такого же типа) и по пути фиброплазии (замещение клеточного дефекта соединительной тканью). И регенерация, и фиброплазия осуществляются как за счет усиления пролиферации, так и за счет снижения уровня апоптоза.

     Большую роль в регуляции пролиферации играют  макрофаги и лейкоциты, которые выделяют ряд медиаторов, стимулирующих, например, трансформацию полибластов в фибробласты.


     Ограничивают апоптоз и усиливают пролиферативные процессы вещества, получившие собирательное название «факторы роста». Эти вещества продуцируются макрофагами, тромбоцитами, лимфоцитами и фибробластами. Их действие может уравновешиваться такими цитокинами как фактор некроза опухолей и бета-интерферон, которые могут ингибировать рост ряда клеток в очаге пролиферации.

      Как известно, в организме человека и животных постоянно присутствуют вещества, которые получили название «кейлоны». Кейлоны сдерживают клеточный митоз и, тем самым,  ограничивают интенсивное размножение клеток, что особенно актуально для некоторых онкологических процессов. На стадии активной пролиферации в очаге воспаления клетки начинают вырабатывать вещества противоположного действия – антикейлоны, стимулирующие клеточное деление.

     В регуляции процессов репарации принимают участие и многие гормоны. На первое место здесь нужно поставить тропные гормоны гипофиза и гормоны желез внутренней секреции, регулируемые гипофизом. Активное влияние на рост и размножение фибробластов, клеток паренхиматозных органов, остеобласты и мышечную ткань оказывает соматотропин. Кроме того, под влиянием соматотропина в организме активно синтезируются инсулиноподобные факторы роста - соматомедины и инсулин.

     Процессы регенерации костной ткани стимулируются половыми гормонами, а заживление ран – гормонами щитовидной железы.

     Таким образом, мы видим, что на заключительной стадии острого воспаления действует большое количество регулирующих факторов, которые обеспечивают как своевременное затухание альтерации и экссудации, так и непосредственно создают благоприятные условия для репарационных и регенерационных процессов.