ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 17.03.2024
Просмотров: 197
Скачиваний: 17
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Автономная некоммерческая организация высшего образования «МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ» |
Кафедра экономики и управления Форма обучения: заочная |
ВЫПОЛНЕНИЕ
ПРАКТИЧЕСКИХ ЗАДАНИЙ
ПО ДИСЦИПЛИНЕ
Моделирование экономических процессов
Группа Вл19М671
Студент
Е.Д. Николаенко
МОСКВА 2022
Практические занятия
№ 1. Составить план производства продукции, обеспечив максимум прибыли, учитывая ограничения, заданные в таблице 1.
Таблица 1. Линейная оптимизация
| Расход сырья (доли) | Прибыль от реализации единицы продукции, руб. | ||||
Сырье 1 | Сырье 2 | Сырье 3 | Сырье 4 | |||
Продукт 1 | 0,2 | 0,3 | 0,1 | 0,4 | 120 | |
Продукт 2 | 0,4 | 0,1 | 0,3 | 0,2 | 150 | |
Продукт 3 | 0,6 | 0,1 | 0,1 | 0,2 | 110 | |
Наличие сырья на складе, кг | 850 | 640 | 730 | 1000 | |
Составление математической модели
Обозначим x1/x2/x3 количество изготавливаемых продуктов Продукт1 Продукт2 Продукт 3 (= 1,2, 3).
Тогда на производство Продукта 1 понадобится 0,2-х1 Сырья 1 вида, на производство Продукта 2— 0,4-х2 Сырья 1 вида, Продукта 3- 0,6-х3 Сырья 1 вида.
Так как запасы ресурсов 1 вида составляют 850 кг, то получаем ограничение по этому виду ресурсов: 0,2хх+0,4х2+0,6х3 <850. (По ресурсам 1 вида)
Рассуждая аналогичным образом, получим ограничения по другим видам ресурсов.
На производство Продукта 1 понадобится 0,3-х1 Сырья 2 вида, на производство Продукта 2— 0,1-х2 Сырья 2 вида, Продукта 3- 0,1х3 ресурсов 2 вида.
Так как запасы ресурсов 2 вида составляют 640 кг, то получаем ограничение по этому виду ресурсов: 0,3хх+0,1х2+0,1х3<640. (По ресурсам 2 вида)
На производство Продукта 1 понадобится 0,1-х1 Сырья 3 вида, на производство Продукта 2— 0,3-х2 Сырья 3 вида, Продукта 3- 0,1х3 Сырья 3 вида.
Так как запасы ресурсов 3 вида составляют 730 кг, то получаем ограничение по этому виду ресурсов: 0,1хх+0,3х2+0,1х3<730. (По ресурсам 3 вида)
На производство Продукта 1 понадобится 0,4-х1 Сырья 4 вида, на производство Продукта 2— 0,2-х2 Сырья 4 вида, Продукта 3- 0,2х3 Сырья 4 вида.
Так как запасы ресурсов 4 вида составляют 1000 кг, то получаем ограничение по этому виду ресурсов: 0,4хх+0,2х2+0,2х3<1000. (По ресурсам 4 вида)
Суммарная прибыль от реализации всей произведённой продукции составит 120х1+150х2+110х3.
№ 2. Распределить план перевозок однотипного груза от трёх поставщиков к четырём потребителям, обеспечив минимальные затраты на перевозку.
Исходные данные представлены в таблице 2.
Таблица 2. Транспортная задача.
| Тарифы по перемещению единицы груза, тыс.руб. | ||||
| Потребитель1 | Потребитель2 | Потребитель2 | Потребитель4 | Возможности поставщика |
Поставщик1 | 7 | 4 | 9 | 3 | 400 |
Поставщик2 | 2 | 11 | 8 | 4 | 550 |
Поставщик 3 | 3 | 8 | 6 | 5 | 300 |
Потребности потребителя | 450 | 250 | 200 | 350 | |
Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов
Проверим необходимое и достаточное условие разрешимости задачи.
∑a = 400 + 550 + 300 = 1250
∑b = 450 + 250 + 200 + 350 = 1250
Условие баланса соблюдается. Запасы равны потребностям. Следовательно, модель транспортной задачи является закрытой.
Этап I. Поиск первого опорного плана.
1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую, и в клетку, которая ей соответствует, помещают меньшее из чисел ai, или bj.
Затем, из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку, и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя.
Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
Искомый элемент равен c21=2. Для этого элемента запасы равны 550, потребности 450. Поскольку минимальным является 450, то вычитаем его.
x21 = min (550,450) = 450.
x | 4 | 9 | 3 | 400 |
2 | 11 | 8 | 4 | 550 - 450 = 100 |
x | 8 | 6 | 5 | 300 |
450 - 450 = 0 | 250 | 200 | 350 | |
Искомый элемент равен c14=3. Для этого элемента запасы равны 400, потребности 350. Поскольку минимальным является 350, то вычитаем его.
x14 = min (400,350) = 350.
x | 4 | 9 | 3 | 400 - 350 = 50 |
2 | 11 | 8 | x | 100 |
x | 8 | 6 | x | 300 |
0 | 250 | 200 | 350 - 350 = 0 | |
Искомый элемент равен c12=4. Для этого элемента запасы равны 50, потребности 250. Поскольку минимальным является 50, то вычитаем его.
x12 = min (50,250) = 50.
x | 4 | x | 3 | 50 - 50 = 0 |
2 | 11 | 8 | x | 100 |
x | 8 | 6 | x | 300 |
0 | 250 - 50 = 200 | 200 | 0 | |
Искомый элемент равен c33=6. Для этого элемента запасы равны 300, потребности 200. Поскольку минимальным является 200, то вычитаем его.
x33 = min (300,200) = 200.
x | 4 | x | 3 | 0 |
2 | 11 | x | x | 100 |
x | 8 | 6 | x | 300 - 200 = 100 |
0 | 200 | 200 - 200 = 0 | 0 | |
Искомый элемент равен c32=8. Для этого элемента запасы равны 100, потребности 200. Поскольку минимальным является 100, то вычитаем его.
x32 = min (100,200) = 100.
x | 4 | x | 3 | 0 |
2 | 11 | x | x | 100 |
x | 8 | 6 | x | 100 - 100 = 0 |
0 | 200 - 100 = 100 | 0 | 0 | |
Искомый элемент равен c22=11. Для этого элемента запасы равны 100, потребности 100. Поскольку минимальным является 100, то вычитаем его.
x22 = min (100,100) = 100.
x | 4 | x | 3 | 0 |
2 | 11 | x | x | 100 - 100 = 0 |
x | 8 | 6 | x | 0 |
0 | 100 - 100 = 0 | 0 | 0 | |
| B1 | B2 | B3 | B4 | Запасы |
A1 | 7 | 4[50] | 9 | 3[350] | 400 |
A2 | 2[450] | 11[100] | 8 | 4 | 550 |
A3 | 3 | 8[100] | 6[200] | 5 | 300 |
Потребности | 450 | 250 | 200 | 350 | |
В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.
2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6. Следовательно, опорный план является невырожденным.
Значение целевой функции для этого опорного плана равно:
F(x) = 4*50 + 3*350 + 2*450 + 11*100 + 8*100 + 6*200 = 5250
Этап II. Улучшение опорного плана.
Проверим оптимальность опорного плана. Найдем предварительные потенциалы ui, vj. по занятым клеткам таблицы, в которых ui + vj = cij, полагая, что u1 = 0.
u1 + v2 = 4; 0 + v2 = 4; v2 = 4
u2 + v2 = 11; 4 + u2 = 11; u2 = 7
u2 + v1 = 2; 7 + v1 = 2; v1 = -5
u3 + v2 = 8; 4 + u3 = 8; u3