Файл: Методы увеличения нефтеотдачи и газоотдачи пластов.rtf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 17.03.2024

Просмотров: 49

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА НЕФТЕГАЗОВОЕ ДЕЛО


Реферат

на тему «Методы увеличения нефтеотдачи и газоотдачи пластов»
Выполнил студент___________ ___________________

Номер группы Ф.И.О.

2022г.

СОДЕРЖАНИЕ
Введение…………………………………………………………………….3
  1. Методы теплового воздействия на пласт………………………………..5

  2. Газовые метооды…………………………………………………………..9

  3. Химические методы……………………………………………………...16

  4. Физико-химические методы……………………………………………..19

  5. Гидровлический разрыв пласта………………………………………….26

  6. Заключение………………………………………………………….…….46

  7. Список литературы……………………………………………..………...48




Введение
Под нефтеотдачей продуктивного пласта в нефтепромысловой практике понимается степень использования природных запасов нефти. Ввиду того, что естественные запасы нефти в недрах земли небезграничны, а открытие новых нефтяных месторождений требует затраты огромных средств и времени; достижение высокой нефтеотдачи пластов уже открытых месторождений имеет исключительно важное значение для страны.

Нефтеотдача пластов, или степень извлечения подземных запасов нефти, в значительной мере влияет на объем капитальных вложений в поисковое и разведочное бурение, а также на планирование прироста промышленных, перспективных и прогнозных запасов. Кроме того, знание фактической величины нефтеотдачи имеет большое значение для оценки остаточных запасов, эффективности применяемых систем разработки, перспектив и масштабов внедрения новых методов разработки на длительно разрабатываемых залежах. Нефтеотдача пластов зависит от геологических условий залегания нефти в недрах, неоднородности пластов, физических свойств коллекторов и содержащихся в них жидкостей, системы разработки и методой воздействия на пласт, а также от предела экономической рентабельности эксплуатации скважин. Добыча нефти должна расти не только за счет ввода в эксплуатацию новых месторождений, но и за счет увеличения нефтеотдачи разрабатываемых месторождений. Количество остаточной нефти по ряду месторождений определяется десятками и сотнями миллионов тонн. Небольшое увеличение нефтеотдачи пластов равноценно открытию нескольких крупных месторождений. Экономические выводы, связанные с получением дополнительной добычи нефти и использованием промысловых сооружений, будут огромны. Таким образом, перспектива увеличения нефтеотдачи, т.е. решение проблемы максимального извлечения нефти из недр, является одной из крупных народнохозяйственных задач.


1. Методы теплового воздействия на пласт


нефть пласт химический призабойный

Эти методы являются перспективными для добычи высоковязких нефтей и нефтей с неньютоновскими свойствами. Однако существуют месторождения с такими условиями залегания и свойствами нефти, при которых тепловые методы воздействия могут оказаться единственными, допускающими промышленную разработку.

Если пластовая температура равна или близка к температуре начала кристаллизации парафина в пластовых условиях, то вытеснение нефти холодной водой приведет к охлаждению пласта, выпадению парафина и закупорке пор, что усилится при сильной послойной неоднородности пласта. Нагнетаемая холодная вода, быстро продвигаясь по наиболее проницаемому прослою, станет источником охлаждения выше и ниже залегающих менее проницаемых прослоев. Охлаждение приведет в лучшем случае к загустению нефти, а в худшем - к выпадению растворенных парафинов в твердую фазу и консервации запасов нефти в пропластках. Указанные особенности свойств нефти и сильная послойная неоднородность пласта могут привести к получению значительного эффекта при закачке в такой пласт теплоносителя. В этом случае горячая вода (или пар), проникая по хорошо проницаемому прослою, будет прогревать выше и нижезалегающие слои пласта, что приводит к снижению вязкости нефти и способствует более полному извлечению запасов.

Методы теплового воздействия на пласт перспективны как методы увеличения нефтеотдачи пластов и как едва ли не единственный способ добычи высоковязких нефтей и битумов. Различают следующие основные виды тепловых методов.

1. Закачка в пласт горячих теплоносителей (вода и пар).

2. Создание внутрипластового подвижного очага горения.

3. Циклическая тепловая обработка призабойной зоны пласта.

Если первые два технологических процесса относятся к методам воздействия на пласт, то последний имеет большее отношение к методам воздействия на призабойную зону пласта. Наилучшие теплоносители среди технически возможных - вода и пар. Это объясняется их высокой энтальпией (теплосодержанием на единицу массы). Вообще теплосодержание пара выше, чем воды, однако с увеличением давления они приближаются друг к другу (рис. 3.11). С увеличением давления нагнетания преимущества пара по сравнению с водой уменьшаются, если их оценивать только с позиций количества вводимой в пласт теплоты. Это также указывает на то, что наибольшая эффективность достигается при закачке пара в неглубокие скважины, когда требуются низкие давления. Следует иметь в виду, что теплосодержание единицы объема пара меньше, чем воды, и особенно при низких давлениях. Однако приемистость нагнетательных скважин при закачке пара выше, чем при закачке воды, вследствие меньшей вязкости пара.



При движении горячей воды по трубопроводам и пласту происходит ее охлаждение. При движении пара такого снижения температуры не происходит благодаря скрытой теплоте парообразования и изменению его сухости. Процессы теплового воздействия связаны с потерей теплоты в трубопроводах, скважине и в самом пласте на прогрев кровли и подошвы. К. п. д. применяемых парогенераторов около 80%. Теплопотери в поверхностных паропроводах оцениваются примерно от 0,35 до 3,5 млн. кДж/сут на каждые 100 м трубопровода. Это сравнительно малая доля, так как современные парогенераторы имеют производительность порядка 250 - 650 млн. кДж/сут.

Теплопотери в скважине составляют примерно 1,7 млн. кДж/сут на каждые 100 м длины НКТ. Для снижения потерь теплоты кольцевое пространство заполняют газом (теплопроводность газа меньше теплопроводности жидкости). Расчеты показывают, что при осуществлении мер по снижению потерь теплоты в скважине их можно довести до 2 - 3 % от общего количества теплоты, вводимой в скважину при закачке горячей воды, и до 3 - 5 % прн закачке пара на каждые 100 м длины ствола. Потери в стволе скважины существенно ограничивают эффективные глубины залегания пластов для теплового воздействия: для воды 1000 - 1200 м и для пара 700 - 1000 м при максимально возможных темпах закачки теплоносителя. Увеличение скорости закачки почти не сказывается на абсолютной величине теплопотерь, поэтому увеличение темпов закачки приводит к уменьшению доли теплопотерь от общего количества вводимой в пласт теплоты.

Теплопередача в пласте осуществляется конвективным (потоком горячей воды или пара) и диффузионным (за счет теплопроводности пористой среды) способами. В результате в пласте формируется температурный фронт перемещающийся в направлении фильтрации теплоносителя. Однако теплоперенос, т. е. движение теплового фронта, и массоперенос, т. е. движение самого теплоносителя в пласте, происходят с разными скоростями вследствие утечки теплоты на нагрев не только самого пласта, по которому происходит фильтрация теплоносителя, но и окружающих пород.

При закачке горячей воды в пласте формируется две зоны: зона с падающей температурой и зона, не охваченная тепловым воздействием, с первоначальной пластовой температурой.

При закачке пара формируется три зоны: первая зона с примерно одинаковой температурой, насыщенная паром, температура которой зависит от давления в этой зоне. Вторая зона - зона горячего конденсата (воды), в которой температура снижается от температуры насыщенного пара до начальной пластовой. Третья зона - зона, не охваченная тепловым воздействием, с пластовой температурой.


При закачке горячей воды в зоне, не охваченной тепловым воздействием, происходит вытеснение нефти водой в изотермических условиях, а в нагретой зоне, в которой температура изменяется от пластовой до температуры воды на забое скважины, - в неизотермическнх. При этом понижается вязкость нефти, улучшается соотношение подвижностей нефти и воды, происходит тепловое увеличение объема нефти и ослабление молекулярно-поверхностных сил. Все это приводит к увеличению нефтеотдачи.

При закачке пара в зоне конденсации механизм вытеснения аналогичен механизму вытеснения при закачке горячей воды. В первой зоне благодаря высокой температуре происходит частичная разгонка легких компонентов нефти и переход их из зоны пара в зону конденсаций, что также приводит к еще большему увеличению нефтеотдачи.

Роль каждого из перечисленных факторов зависит как от температурной обстановки в пласте, так и от физико-химических свойств пластовой нефти (плотность, вязкость, наличие легких компонентов и пр.).

Кроме того, на практике замечены увеличение и последующая стабильность приемистости нагнетательных скважин при закачке горячей воды. Однако при закачке пара в результате действия пресного конденсата на глинистые компоненты пористой среды, приводящего к разбуханию глин, может наблюдаться и снижение приемистости.
2. Газовые методы

Газовый метод может осуществляться контактным ( его иногда называют способом порошков, поскольку диффундирующий элемент и остальные компоненты насыщающей смеси задаются в виде порошков) и неконтактным способами. При контактном способе газовая фаза генерируется в непосредственной близости от насыщаемой поверхности в результате взаимодействия частиц порошка диффундирующего элемента ( находящегося в свободном или связанном состоянии) с одним из газообразных галогенов или галоидных газов; при неконтактном - газовая фаза генерируется на значительном расстоянии от насыщаемого объекта и его поверхность не вступает в непосредственный контакт с диффундирующим элементом, находясь только в окружении чистой газовой фазы, которая содержит галогенид этого элемента.

Газовый метод хотя и проще ( не требует предварительного получения карбоната аммония), но имеет недостатки, заставившие отказаться от него и перейти на жидкостный. Наиболее существенный недостаток: образование мелких игольчатых кристаллов карбоната кальция, которые значительно хуже отфильтровываются и промываются, чем крупные пластинчатые кристаллы, образующиеся при жидкостном методе.
Газовый метод проще жидкостного (не требуется предварительное приготовление карбоната аммония), но имеет недостатки, которые заставили отказаться от него и перейти на жидкостный метод. Недостатками газового метода являются: периодичность процесса и большой расход двуокиси углерода. При газовом методе образуются мелкие игольчатые кристаллы СаСО3, которые значительно хуже фильтруют и промываются, чем крупные пластинчатые кристаллы, образующиеся при жидкостном методе. Существенным недостатком газового метода является также то, что для отвода реакционного тепла необходимо устанавливать холодильники для охлаждения пульпы в реакторах и требуется сернокислотная промывка отходящих газов из реакторов. При жидкостном методе отвод реакционного тепла осуществляют циркуляцией через холодильники чистого раствора карбоната аммония, и необходимости в сернокислотной промывке газов нет.

Газовый метод анализа представляет собой определение отдельных газов в газовых смесях при пропускании их через специальные реактивы, способные поглощать те или иные газы.

Недостатками газового метода являются: периодичность процесса и большой расход двуокиси углерода.

Доля газовых методов повышения нефтеотдачи неуклонно возрастает. Основной проблемой при применении газа в качестве вытесняющего агента является процесс развития вязкостной неустойчивости, приводящий к быстрому прорыву газа к добывающим скважинам. Одним из способов увеличения эффективности данного процесса является внутрипластовая генерация пены, которая в пористой среде сильно снижает подвижность газовой фазы, выравнивая тем самым фронт вытеснения и увеличивая полноту извлечения нефти. Однако на сегодняшний день физика процесса воздействия пены на газовый поток остается малоизученной, что препятствует созданию адекватных численных моделей фильтрации таких систем.

При газовом методе нагрев изделия для закалки производится пламенем от газовой горелки, обычно кислородно-ацетиленовой.

Область испытания газовых методов по типу коллекторов, их проницаемости и стадии разработки весьма широка, а диапазон вязкости ограничен до 15 мПа с. Полученные результаты свидетельствуют о его эффективности.

Снижение эффективности газовых методов разработки вследствие неблагоприятного соотношения подвижностей газовой и нефтяной фаз можно, в определенной степени, устранить при совместном нагнетании в пласт газа и воды. При этом газ будет, в первую очередь