Файл: Технологический расчёт магистрального нефтепровода.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 18.03.2024

Просмотров: 32

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.




По графику рисунок 3.5.1 находим =22.

Определяем критическое усилие для криволинейных участков трубопровода по формулам (3.5.23), (3.5.24)



Из двух значений выбираем наименьшее и проверяем условие (3.5.10)

Условие устойчивости криволинейных участков не выполнено. Поэтому необходимо увеличить минимальный радиус упруго изгиба

Откуда

4. Определение числа нефтеперекачивающих станций (НПС)
Определяем секундный расход нефти и ее среднюю скорость по формулам (3.6.1) и (3.6.2)
=1,57 м3/с;


Определяем режим течения

Так как Re>2300 режим течения жидкости турбулентный.

Определяем относительную шероховатость труб при =0,05 мм (таблица 3.6.2) и первое переходное число Ренольдса по формуле (3.6.6)



Так как Re< Re1, то течение нефти происходит в зоне гидравлически гладких труб, поэтому коэффициент гидравлического сопротивления вычисляем по формуле из таблицы (3.6.1)

Определяем гидравлический уклон в нефтепроводе по формуле (3.6.7)

Определяем полные потери в трубопроводе (3.6.8), приняв Нкп = 40 м. Так как L>600 м, то число эксплуатационных участков определяем по формуле (3.6.9)




Определяем расчетный напор одной станции по формуле (3.6.11)
м.
Расчетное число насосных станций определяем по формуле (3.6.13)

Если округлить число НПС в меньшую сторону (10 станции), то гидравлическое сопротивление трубопровода можно снизить прокладкой лупинга. Приняв диаметр лупинга равным диаметру основного трубопровода, найдем значение и длину лупинга по формулам (3.6.15) и (3.6.14)

м.
5. Построение совмещенной характеристики магистрального нефтепровода и перекачивающих станций.

Построим совмещенную характеристику нефтепровода постоянного диаметра и нефтепровода, оборудованного с лупингом и нефтеперекачивающих станций. Результаты вычислений представлены в таблице 1. для этого выполним гидравлический расчет нефтепровода в диапазоне от 4800 до 6000 с шагом 200 .
Таблица 1 – Результаты расчета характеристик трубопровода и перекачивающих станций.

Расход

Q,

Напор

насосов

Характеристика

трубопровода

Характеристика

нефтеперекачивающих станций

Hм, м

Нп, м

с пост.

диам.

с лупин-

гом

20

27

28

29

30

4800

163,157

97,66

3169,865

2983,085

3458,47

4600,57

4763,73

4926,89

5090,048

5000

157,65

95,7

3399,068

3198,456

3344,4

4447,95

4605,6

4763,25

4920,9

5200

151,917

93,66

3635,252

3420,387

3225,67

4289,09

4441,01

4592,93

4744,848

5400

145,960

91,54

3878,350

3648,815

3102,28

4124,01

4269,97

4415,93

4561,892

5600

139,778

89,34

4128,296

3883,677

2974,24

3952,69

4092,47

4232,25

4372,032

5800

133,371

87,06

4385,028

4124,917

2841,55

3775,15

3908,52

4041,89

4175,268

6000

126,74

84,7

4648,487

4372,477

2704,2

3591,38

3718,12

3844,86

3971,6



График совмещенной характеристики нефтепровода и нефтеперекачивающей станции показан в приложении 1.

Точка пересечения характеристики нефтепровода с лупингом и нефтеперекачивающих станций (n=9) подтверждает правильность определения длины лупинга, так как Qм=Q=5660
.

При округлении числа НПС в большую сторону рассчитаем параметры циклической перекачки. Из совмещенной характеристики трубопровода и нефтеперекачивающей станции при n=10, m=3 рабочая точка переместиться в точку М2, а расход соответствует Q2=5708 . Если на каждой НПС отключить по одному насосу n=10, m=2, то рабочая точка переместиться в точку М1, а нефтепровод будет работать с производительностью Q1=4965 .

Так как выполняется условие Q1



6. Расстановка станций по трассе магистрального нефтепровода
Рассмотрим расстановку станций на местности исходя из максимальной производительности нефтепровода при n=10 и Q2=5708 . Количество НПС на первом эксплуатационном участке примем равным 5 и на втором – 5.

Гидравлический уклон при максимальной производительности составляет i=0,00457.

Напоры развиваемые подпорными и магистральными насосами при максимальной подаче Q2 равны
,


Расчетный напор станции составит:
м.
Построим гидравлический треугольник. За горизонтальный катет примем отрезок ab, равный l=100 км, который отложим в масштабе длин. Вертикальный катет ac равен м и отложим его в масштабе высот. Гипотенуза треугольника bc и есть положение линии гидравлического уклона в принятых масштабах построений.

Результаты расстановки станций приведены в таблице 2.
Таблица 2 – расчетные значения высотных отметок НПС и длин линейных участков нефтепровода.

Нефтеперекачивающая

станция

Высотная отметка zi, м

Расстояние от начала нефтепровода, км

Длина линейного участка li, км

ГНПС-1

195,94

0

90

НПС-2

194,20

90

89

НПС-3

192,90

179

88

НПС-4

192,74

267

87,5

НПС-5

193,51

354,5

98

НПС-6

194,23

452,5

86,5

НПС-7

194,33

539

87,5

НПС-8

194,29

626,5

90

НПС-9

194,33

716,5

89,5

НПС-10

193,9

806

94

КП

190,65

900

-




7. Расчет эксплуатационных режимов магистрального нефтепровода
Графический метод

Рассмотрим режимы работы магистрального нефтепровода на первом эксплуатационном участке протяженностью 452,5 км.

Построим суммарную совмещенную характеристику линейных участков нефтепровода и НПС. Задаваясь расходами от 1000 до 6000 , определяем режимы течения нефти и рассчитываем потери напора на отдельных двух участках нефтепровода.

Найдем напоры подпорного и магистральных насосов. Результаты расчетов приведены в таблице 3.
Таблица 3 – Результаты гидравлического расчета участков нефтепровода и напорных характеристик насосов.

Расход Q, м³/ч

1000

2000

3000

4000

5000

6000

Скорость течения v, м/с

0,35

0,71

1,06

1,41

1,77

2,12

Число Ренольдса Re

7403,215

14806,43

22209,64

29612,86

37016,07

44419,29

Коэффициент гидравлического сопротивления

0,0341

0,0287

0,0259

0,0241

0,0228

0,0218

Гидравлический уклон

0,00022

0,00073

0,00148

0,00245

0,00362

0,00498

Напор магистрального насоса, Нмн, м

225,1

216,7

202,6

182,9

157,7

126,7

Напор подпорного насоса, Нпн, м

119,7

116,7

111,7

104,7

95,7

84,7

Потери напора на участке Н, м

1-участок

18,1

65,1

134,2

223,2

330,7

455,6

2-участок

38,25

131,72

269,15

446,13

659,88

908,37

3 участок

58,83009

198,258

403,245

667,237

986,066

1356,727

4 участок

79,09205

264,213

536,377

886,883

1310,198

1802,330

5 участок

140,6938

376,991

724,393

1171,795

1712,134

2340,314

Напор развиваемый насосами,

Н=Нпн+ kмнHмн

Kмн=0

119,7

116,7

111,7

104,7

95,7

84,7

kмн=1

344,8

333,4

314,3

287,6

253,4

211,4

kмн=2

569,9

550,0

516,9

470,6

411,0

338,2

kмн=3

795,0

766,7

719,5

653,5

568,7

464,9

kмн=4

1020,1

983,3

922,1

836,5

726,3

591,7

kмн=5

1245,2

1200,0

1124,8

1019,4

884,0

718,4

kмн=6

1470,2

1416,7

1327,4

1202,3

1041,6

845,1

kмн=7

1695,33

1633,32

1529,97

1385,28

1199,25

971,88

kмн=8

1920,42

1849,98

1732,58

1568,22

1356,9

1098,62

kмн=9

2145,51

2066,64

1935,19

1751,16

1514,55

1225,36

kмн=10

2370,6

2283,3

2137,8

1934,1

1672,2

1352,1

kмн=11

2595,69

2499,96

2340,41

2117,04

1829,85

1478,84

kмн=12

2820,78

2716,62

2543,02

2299,98

1987,5

1605,58

kмн=13

3045,87

2933,28

2745,63

2482,92

2145,15

1732,32

kмн=14

3270,96

3149,94

2948,24

2665,86

2302,8

1859,06

kмн=15

3496,05

3366,6

3150,85

2848,8

2460,45

1985,8