ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.03.2024
Просмотров: 105
Скачиваний: 0
Швидкий розвиток оптоелектроніки зробив можливим у багатьох випадках замінити елементи електронних схем оптронами. Деякі приклади такої заміни наведені у табл. 6.1.
Таблиця 6.1
Електрорадіокомпонент Оптронний аналог
Імпульсний
трансформатор
Перемикач
Змінний резистор
Потенціометр
Змінний конденсатор
233
7 ОСНОВИ МІКРОЕЛЕКТРОНІКИ
7.1 Основні поняття і визначення
Мікроелектроніка – це галузь електроніки, пов'язана з розробленням, виготовленням і експлуатацією мікроелектронних виробів.
Історична довідка
Розвиток електронної техніки у другій половині ХХ століття відбувається за такими етапами.
1 50-ті роки ХХ ст. – етап вакуумної електроніки.
Елементна база останньої – елекронно-вакуумні прилади. Відбувається мініатюризація електронних ламп і пасивних елементів, оптимізація їх характеристик і параметрів, застосовується об'ємний монтаж. Це дозволило підвищити щільність упакування до 200 елементів на 1 дм³ (0,2 елемента на 1 см³).
2 60-ті роки ХХ ст. – етап дискретної напівпровідни-
кової електроніки. Здобутки цього етапу відображені, зокрема, в попередніх розділах цього навчального посібника. Поява і широке впровадження транзисторів, які разом з мініатюрними пасивними елементами утворюють якісний стрибок у мініатюризації пристроїв електроніки, сприяють підвищенню надійності, економічності, зниженню габаритів і маси. Актуалізуються функціонально-вузловий метод конструювання електронної техніки: не з окремих радіодеталей, а з уніфікованих функціональних вузлів – підсилювачів, генераторів, перетворювачів, тригерів тощо. Застосовуються модулі (мікромодулі) із щільністю упакування 2 елементи на 1 см³.
3 70-ті роки ХХ ст. – етап мікроелектроніки. Перехід до застосування інтегральних схем (ІС). «Схема» в цьому терміні набуває нового значення: це пристрій, вузол. «Інтегральна» вказує на об'єднання великої кількості
234
електрично з'єднаних елементів у одному виробі (корпусі). В ІС зникає необхідність застосування численних паяних з'єднань, які знижують надійність; зменшуються габарити і маса, а відтак вартість електронних виробів, оскільки зменшується кількість складальних і монтажних операцій. ІС на цьому етапі містять у собі 10-40 еквівалентних елементів (біполярних транзисторів, резисторів, конденсаторів, МДН-структур тощо). Кожна інтегральна схема виконує порівняно просту закінчену функцію (підсилювач, формувач, логічний елемент, тригер, лічильник тощо) і оформляється в автономному корпусі. Подальший розвиток мікромініатюризації до 1000 елементів на кристалі.
4 80-ті роки ХХ ст. – етап комплексної мікромініатюризації електронної техніки, етап великих інтегральних схем (ВІС) і надвеликих інтегральних схем (НВІС). ВІС порівняно з ІС малого рівня інтеграції більш надійні, дешевші, менші за габаритами. Поява мікропроцесорів дозволила замінити апаратурне (схемне) проектування електронної техніки програмуванням універсальних структур згідно з виконуваною ними функцією.
5 90-ті роки ХХ ст. – оголошений етап так званої функ-
ціональної мікроелектроніки. Втім, на пострадянському просторі внаслідок великих політико-економічних зрушень цей етап був значною мірою підважений, хоча світова електроніка продовжувала неухильно розвиватися. Елементна база цього етапу – ІС, які функціонують на базі нових фізичних явищ і принципів (оптоелектроніка, акустоелектроніка, хемоелектроніка, магнітоелектроніка тощо). Особливістю елементів функціональної мікроелектроніки є застосування середовищ з розподіленими параметрами, в яких не вдається виділити окремі області, що виконують функції звичайних радіоелементів. Тому зрештою це електронні схеми, які не містять елементів і міжз’єднань у
235
звичайному розумінні. Такі схеми можна характеризувати лише в цілому з огляду на виконувану ними функцію, причому вони можуть мати такі характеристики, яких не мають звичайні радіосхеми.
Мікроелектронний виріб – електронний пристрій з високим ступенем інтеграції (об'єднання) електрорадіоелементів.
Інтегральна схема (ІС) – мікроелектронний виріб, який виконує певну функцію перетворення та обробки сигналів і має високу щільність упакування електрично з'єднаних елементів (більше ніж 5 елементів на 1 см³). З точки зору виготовлення і експлуатації ІС розглядається як єдине ціле і складається з елементів та компонентів.
Елемент ІС – частина ІС, що реалізує функцію будьякого радіоелемента (транзистор, діод, резистор, конденсатор). Він не може бути відділеним від ІС як самостійний виріб і виконаний у кристалі ІС. Наприклад, елементами ІС є біполярні транзистори і діоди у напівпровідникових мікросхемах, плівкові резистори в гібридних мікросхемах.
Компонент ІС – частина ІС, яка реалізує функцію будьякого електрорадіоелемента. Однак компонент є самостійним виробом, що виготовляється окремо від ІС і може бути відділений від ІС. Наприклад, біполярні транзистори і діоди в гібридних ІС.
Напівпровідникова ІС – це ІС, у якої всі елементи і міжз’єднання виконані в об'ємі і на поверхні напівпровідникової пластини (рис. 7.1).
Плівкова ІС - це ІС, у якої всі елементи і міжз’єднання виконані у вигляді різних плівок, нанесених на поверхню діелектричної підкладки.
Гібридна ІС являє собою комбінацію плівкових пасивних елементів і активних компонентів, розміщених на спільній діелектричній підкладці (рис. 7.2).
236
|
|
|
|
Дифузійний |
МДН-конденсатор |
|
|
||
|
Транзистор V |
|||
|
|
резистор R |
||
|
|
|
|
|
|
|
|
Рисунок 7.1 – Структура напівпровідникової ІС
Рисунок 7.2 – Структура ГІС
237
Суміщена ІС це мікросхема, в якій активні елементи розміщені в об'ємі напівпровідникового кристала, а пасивні, виготовлені за плівковою технологією, наносяться на попередньо ізольовану діелектриком поверхню напівпровідникового кристала (рис. 7.3).
Рисунок 7.3 – Структура суміщеної ІС
Елементи конструкції ІС Корпус ІС – призначений для захисту ІС від зовнішніх
впливів і для з'єднання із зовнішніми електричними колами за допомогою виводів. Разом із корпусними випускаються і безкорпусні ІС.
Підкладка ІС – заготовка, призначена для виготовлення на ній елементів гібридних ІС, міжз’єднань і контактних площадок.
Напівпровідникова пластина заготовка з напівпровід-
никового матеріалу, яка застосовується для виготовлення напівпровідникових інтегральних схем (рис. 7.4. поз. 1).
Кристал ІС, чіп – частина напівпровідникової пластини (прямокутник 5х5 мм), у об'ємі і на поверхні якої
238
сформовані елементи ІС, міжз’єднання і контактні площадки (рис. 7.4. поз. 2).
Контактні площадки – металізовані ділянки на підкладці або кристалі, призначені для приєднання до виводів корпуса ІС, а також для контролю її електричних параметрів і режимів (рис. 7.4. поз. 3).
Рисунок 7.4 – Напівпровідникова пластина, чіп, контактна площадка
Мікроскладання – мікроелектронний виріб, який виконує певну функцію і складається з елементів, компонентів і інтегральних схем (корпусних і безкорпусних) з метою мікромініатюризації електронної техніки.
Мікроблок – мікроелектронний виріб, який, окрім мікроскладань, містить ще інтегральні схеми й компоненти.
Серія ІС – це сукупність ІС, які можуть виконувати різноманітні функції, але мають єдине конструктивнотехнологічне використання і призначені для спільного застосування (напр., серія 133, серія 155, серія 140).
Класифікація інтегральних схем
1 За технологією виготовлення ІС поділяють на:
напівпровідникові;
плівкові;
гібридні.
2За функціональними призначеннями:
аналогові (АІС);
цифрові (ЦІС).
239
3 За ступенем інтеграції, який оцінюється показником k lg Ne , де Ne – число елементів і компонентів у складі ІС:
малої інтеграції:
Ne ≤ 10, k 1, 10<Ne≤100, k 2 ;
середньої інтеграції: 100<Ne≤1000, k 3;
великі інтегральні схеми (ВІС): 1000<Ne≤10000, k 4 ;
надвеликі інтегральні схеми (НВІС):
10000<Ne≤100000, k 5 .
4За функціональними можливостями:
універсальні;
спеціалізовані.
5За типом основного активного елемента:
ІС на біполярних транзисторах;
ІС на уніполярних транзисторах (МДН, КМДН).
6За конструктивним виконанням:
корпусні;
без корпусні.
Система умовних позначень інтегральних схем
Упроваджена на підставі ГОСТ 17021-75.
Номер серії
1 40 УД 7
Порядковий номер розробки даної ІС в серії (за функціональною ознакою)
Функціональне призначення ІС (У – підсилювач, Д - операційний)
Порядковий номер розробки даної серії
Конструктивно-технологічне виконання ІС
1-й елемент: 1, 5, 6, 7 – напівпровідникові ІС; 2, 4, 8 - гібридні ІС; 3 - інші (плівкові, вакуумні).
240
3-й елемент: ЛА – логічний елемент І – НЕ; ЕН – стабілізатор напруги; ТВ – JК тригер; ТМ – D-тригер; ТМ D- тригер; ТР – RS-тригер; ІP – регістр; ІE – лічильник; СА – компаратор; ПВ – АЦП; ПА – ЦАП; УВ – підсилювач ВЧ; УР – підсилювач проміжної частоти; УН – підсилювач НЧ; УВ – відеопідсилювач; УЕ – емітерний повторювач; ФВ – фільтр ВЧ; ФН – фільтр НЧ; ГС – генератор синусоїдних сигналів.
7.2 Гібридні інтегральні схеми
Основою мікроелектроніки є метод інтеграції (об'єднання) елементів. При цьому сукупність елементів ІС і міжз'єднань виготовляється в єдиному технологічному процесі – одержують закінчений функціональний вузол. Автономно або разом із додатковими елементами цей вузол власне утворює інтегральну схему.
Застосовуються дві основні технології виготовлення ІС – гібридна і напівпровідникова.
До технології виготовлення ІС ставлять 2 суперечливі
вимоги: |
|
|
|
|
1 |
Підвищений |
ступінь |
інтеграції |
(щільності |
упакування). |
|
|
|
|
2 |
Необхідно мати універсальні ІС. |
|
Втім, збільшення ступеня інтеграції ІС обмежує сферу її застосування, тобто призводить до зниження універсальності схеми.
Наявність двох технологій – гібридної і напівпровідникової – дещо розв'язує цю суперечність. Максимальну цільність упакування дає напівпровідникова технологія, проте вона є складною, і властивості елементів, виготовлених за нею, не завжди задовольняють вимоги ТУ (наприклад, розкид параметрів і т.п.) Гібридна технологія є більш економною і пристосованою до спеціальних прецизійних
241
пристроїв, дозволяє одержати ІС із кращими властивостями, хоча при цьому з низьким ступенем інтеграції.
Варто пам'ятати, що, крім напівпровідникових і гібридних ІС, існують ще й плівкові ІС. Плівкова ІС – це така, у якої елементи і міжз'єднання виготовляються з плівок необхідної форми з різними електрофізичними властивостями і розміщуються на поверхні діелектричної підкладки або діелектричної плівки. Однак плівкова технологія не дозволяє виготовляти активні елементи із задовільними параметрами. Відтак чисто плівкові ІС – це пасивні схеми (переважно резистивні розподільники напруги, набір резисторів і конденсаторів, резистивноємнісні схеми). Тому всі переваги плівкової технології застосовуються у високопрецизійних гібридних ІС.
Гібридна технологія полягає у наступному (рис. 7.2). На відшліфовану діелектричну підкладку (скло, кераміка) за допомогою масок наносяться плівки резистивних і провідникових матеріалів, а також контактні площадки. Активні елементи за плівковою технологією, як уже зазначалося, не виготовляються, а виробляються окремо, у безкорпусному виконанні, а потім підпаюються. Підкладка розрізається на окремі ІС, які вкладаються до корпусів і приєднуються до контактних площадок виводів. Корпуси герметизуються і маркуються.
Розрізняють два різновиди гібридних ІС:
товстоплівкові, у яких товщина нанесених плівок
∆>10 мкм;
тонкоплівкові, у яких ∆≤1-2 мкм.
Нанесення резистивних і провідникових плівок здійснюється через випарювання у вакуумі різноманітних матеріалів за допомогою трафаретів: ніхрому, двоокису олова і т.д. Плівкові резистори мають значно більший діапазон номінальних значень і менший розкид параметрів
242