Файл: Изучение свойств активных фильтров на операционных усилителях.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.03.2024

Просмотров: 40

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Мысль о том, что можно мириться с пульсациями характеристики в полосе пропускания ради увеличения крутизны переходного участка, доводится до своего логического завершения в идее так называемого эллиптического фильтра (или фильтра Кауэра), в котором допускаются пульсации характеристики как в полосе пропускания, так и в полосе задерживания ради обеспечения крутизны переходного участка даже большей, чем у характеристики фильтра Чебышева. С помощью ЭВМ можно сконструировать эллиптические фильтры так же просто, как и классические фильтры Чебышева и Баттерворта. На рис. 7 представлено графическое задание амплитудно-частотной характеристики фильтра. В этом случае (фильтр нижних частот) определяются допустимый диапазон коэффициента передачи фильтра (т.е. неравномерность) в полосе пропускания, минимальная частота, на которой характеристика покидает полосу пропускания, максимальная частота, где характеристика переходит в полосу задерживания, и минимальное затухание в полосе задерживания.

Рисунок 7 — Задание параметров частотной характеристики фильтра

Фильтры Бесселя. Как было установлено ранее, амплитудно-частотная характеристика фильтра не дает о нем полной информации. Фильтр с плоской амплитудно-частотной характеристикой может иметь большие сдвиги фаз. В результате этого форма сигнала, спектр которого лежит в полосе пропускания, будет искажена при прохождении через фильтр. В ситуации, при которой форма сигнала имеет первостепенное значение, желательно иметь в распоряжении линейно-фазовый фильтр (фильтр с постоянным временем запаздывания). Предъявление к фильтру требования обеспечения линейного изменения сдвига фазы в зависимости от частоты эквивалентно требованию постоянства времени запаздывания для сигнала, спектр которого расположен в полосе пропускания, т. е. отсутствия искажений формы сигнала. Фильтр Бесселя (также называемый фильтром Томсона) имеет наиболее плоский участок кривой времени запаздывания в полосе пропускания, подобно тому, как фильтр Баттерворта имеет наиболее плоскую амплитудно-частотную характеристику. Чтобы понять, какое улучшение во временной области дает фильтр Бесселя, посмотрите на рис. 8, где изображены нормированные по частоте графики времени запаздывания для 6-полюсных фильтров нижних частот Бесселя и Баттерворта. Плохая характеристика времени запаздывания фильтра Баттерворта обуславливает появление эффектов типа выброса при прохождении через фильтр импульсных сигналов. С другой же стороны, за постоянство времен запаздывания у фильтра Бесселя приходится расплачиваться тем, что его амплитудно-частотная характеристика имеет еще более пологий переходной участок между полосами пропускания и задерживания, чем даже у характеристики фильтра Баттерворта.


Рисунок 8 — Сравнение временных запаздываний для 6-полосных фильтров нижних частот Бесселя (1) и Баттерворта (2). Фильтр Бесселя благодаря своим превосходным свойствам во временной области дает наименьшее искажение формы сигнала

Существует много различных способов проектирования фильтров, в которых делаются попытки улучшить рабочие параметры фильтра Бесселя во временной области, частично жертвуя постоянством времени запаздывания ради уменьшения времени нарастания и улучшения амплитудно-частотной характеристики. Фильтр Гаусса имеет почти столь же хорошие фазочастотные характеристики, как и фильтр Бесселя, но при улучшенной переходной характеристике. Другой интересный класс представляют собой фильтры, позволяющие добиться одинаковых по величине пульсаций кривой времени запаздывания в полосе пропускания (аналогично пульсациям амплитудно-частотной характеристики фильтра Чебышева) и обеспечивающие примерно одинаковое запаздывание для сигналов со спектром вплоть до полосы задерживания. Еще один подход к созданию фильтров с постоянным временем запаздывания — это применение всепропускающих фильтров, называемых иначе корректорами во временной области. Эти фильтры обладают постоянной амплитудно-частотной характеристикой, а сдвиг фазы может меняться согласно конкретным требованиям. Таким образом, их можно применять для выравнивания времени запаздывания любых фильтров, в частности фильтров Баттерворта и Чебышева.


Сравнение фильтров.

Несмотря на ранее высказанные замечания о переходной характеристике фильтров Бесселя, он все же обладает очень хорошими свойствами во временной области по сравнению с фильтрами Баттерворта и Чебышева. Сам фильтр Чебышева при его весьма подходящей амплитудно-частотной характеристике имеет наихудшие параметры во временной области из всех этих трех типов фильтров. Фильтр Баттерворта дает компромисс между частотами и временными характеристиками. На рис. 9 дана информация по рабочим характеристикам этих трех типов фильтров во временной области, дополняющая приведенные ранее графики амплитудно-частотных характеристик. По этим данным можно сделать вывод, что в тех случаях, когда важны параметры фильтра во временной области, желательно применять фильтр Бесселя.

Рисунок 9 — Сравнение переходных процессов 6-полюсных фильтров нижних частот. Кривые нормированы приведением значения ослабления 3 дБ к частоте 1 Гц. 1 - фильтр Бесселя; 2 - фильтр Баттерворта; 3 - фильтр Чебышева (пульсации 0.5 дБ)

Известны очень хитроумные конструкции активных фильтров, каждый из которых используется для того, чтобы в качестве характеристики фильтра получить нужную функцию, как, например, функция Баттерворта, Чебышева и др. Можно спросить: зачем вообще нужно более одной схемы активного фильтра? Причина в том, что каждая схемная реализация является наилучшей в смысле тех или иных желательных свойств, и поэтому «абсолютно лучшей» схемы фильтра не существует.

Некоторые свойства, желательные для схемы активного фильтра, таковы:

  1. малое число элементов, как активных, так и пассивных; 

  2. легкость регулировки;

  3. малое влияние разброса параметров элементов, в особенности значений емкостей конденсаторов;

  4. отсутствие жестких требований к применяемому операционному усилителю, в особенности требований к скорости нарастания, ширине полосы пропускания и полному выходному сопротивлению;

  5. возможность создания высокодобротных фильтров;

  6. нечувствительность характеристик фильтра по отношению к параметрам элементов и коэффициенту усиления ОУ (в частности, произведению коэффициента усиления на ширину полосы пропускания, ƒс).

По многим причинам последнее свойство является одним из наиболее важных. Фильтр, который требует соблюдения высокой точности значений параметров элементов, трудно настраивать, и по мере старения элементов настройка теряется; кроме того, дополнительной неприятностью является требование использовать элементы с малым допуском значений параметров.


Схема фильтра на ИНУН (источник напряжения, управляемый напряжением) обязана широкой популярностью в основном своей простоте и малому числу деталей, но эта схема страдает недостатком, а именно высокой чувствительностью к изменениям значения параметров элементов. Для сравнения: недавно возникший интерес к более сложным гиратороподобным схемам вызван их нечувствительностью к малым изменениям параметров элементов.

В этом разделе будет рассмотрено несколько схем для реализации фильтров нижних и верхних частот, а также полосовых фильтров. Начнем же с популярной схемы на ИНУН, далее узнаем о двойном Т-образном фильтре с высоким избирательным подавлением («фильтр - пробка»).

Фильтр на источнике напряжения, управляемом напряжением (ИНУН), известный также просто как фильтр с управляемым источником — это вариант фильтра Саллена и Ки. В этом случае повторитель с единичным коэффициентом усиления заменен не инвертирующим усилителем с коэффициентом усиления, большим 1. На рис. 10 даны схемы для реализации фильтра нижних и верхних частот, а также полосового фильтра. С помощью присоединенных к выходу ОУ резисторов, образован не инвертирующий усилитель напряжения с коэффициентом усиления K, а остальные R и С по-прежнему формируют частотную характеристику фильтра. Как будет показано далее, эти двухполюсные фильтры могут быть фильтрами Баттерворта, Беселя и др. за счет определенного подбора параметров элементов. Любое число двухполюсных секций на ИНУН может быть соединено каскадно для создания фильтров более высокого порядка. В таком соединении отдельные секции, вообще говоря, не идентичны. Действительно, каждая секция соответствует квадратичному сомножителю полинома степени n, описывающего фильтр в целом.

Рисунок 10 — Схемы активных фильтров на ИНУН. a — фильтр нижних частот; б — фильтр верхних частот; в — полосовой фильтр

В большинстве обычных справочников по фильтрам приведены формулы и таблицы для всех стандартных характеристик фильтров, включая отдельные таблицы для фильтров Чебышева с разными амплитудами пульсаций. Полосовой и полосноподавляюший фильтры легко могут быть составлены из их комбинаций.

Начало формы

Двойной Т-образный фильтр-пробка.

Изображенная на рис. 12 пассивная RC-цепь имеет бесконечное затухание на частоте, равной ƒc = 1/2πRC. Такое бесконечное ослабление для RC-фильтров, вообще говоря, не характерно - данный фильтр действует столь эффективно благодаря сложению двух сигналов, которые на частоте среза имеют разность фаз в 180°. Получение достаточно близкого к нулю значения характеристики на частоте ƒc требует хорошего согласования элементов. Этот фильтр называется двойным Т-образным и может употребляться для устранения сигнала помехи, например сетевой наводки 50 Гц. Трудность состоит в том, что характеристика этой цепи такая же «мягкая», как и у всех пассивных RC-цепей, и лишь в окрестности частоты ƒc обрывается почти отвесно. Например, двойная Т-образная цепь, управляемая идеальным источником напряжения, имеет затухание 10 дБ на частоте, равной удвоенной (или половинной) частоте ƒc, и ослабление 3 дБ на частоте, равной учетверенной (или деленной на четыре) частоте ƒc.


Рисунок 12 — Пассивный двойной Т-образный фильтр - пробка.

Один из способов улучшить характеристику этой цепи - сделать ее «активной» - по типу фильтра Саллена и Ки (рис. 13). Эта идея кажется в принципе хорошей, но на практике разочаровывает из-за невозможности сохранения хорошего затухания на частоте нуля. Дело в том, что при увеличении резкости провала характеристики (большее усиление в петле следящей связи) ослабление на частоте нуля уменьшается.

Рисунок 13 — Т-образный фильтр со следящей связью.

Двойные Т-образные фильтры выпускаются в виде готовых модулей на диапазон частот от 1 Гц до 50 кГц с глубиной ослабления на частоте провала около 60 дБ (с некоторым ухудшением при высоких и низких температурах). Такие фильтры легко собрать из отдельных элементов, но для получения глубокого и стабильного провала следует выбирать конденсаторы и резисторы со стабильными параметрами и низкой температурной зависимостью. Один из элементов должен быть регулируемым.

Ход выполнения лабораторной работы:

Простой ФВЧ первого порядка

Крутизна спада 20дБ на декаду

Используем стандартный ОУ OP_07, заданную частоту среза берем примерно 1кГц

Определить частоту среза данного фильтра (рис. 14) можно, рассчитывая реактивное сопротивление конденсатора. Частота, при которой оно станет равным сопротивлению резистора, включенного последовательно с конденсатором, и будет частотой среза.

Пусть емкость конденсатора 10 нФ, тогда:

Рисунок 14 – ФВЧ первого порядка с крутизной спада 20 дБ на декаду

Частотные характеристики фильтра показаны на рисунке 15.

Рисунок 15 – ЛАЧХ и ЛФЧХ ФВЧ первого порядка с крутизной 20 дБ на декаду

Фильтр верхних частот второго порядка, крутизна спада характеристики 40дБ на декаду