Файл: хроматографический анализ.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.04.2024

Просмотров: 55

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

5. В чем состоит метод теоретических тарелок в хроматографии?

7. Какое практическое значение имеет газовая хроматография?

9. Каковы области применения, достоинства и недостатки методов адсорбционной хроматографии?

10. Какие требования предъявляются к адсорбентам и растворителям? Наиболее распространенные растворители и адсорбенты в жидкостной хроматографии.

11. Какие способы применяют для определения эффективности хроматографических разделений?

12. Какие требования предъявляются к жидкой фазе в газожидкостной хроматографии? Какие вещества используют в качестве жидкой фазы, в качестве твердого носителя?

Твердые носители.

13. В чем сущность методов количественного анализа: а) внешнего стандарта; б) метода нормировки; в) внутреннего стандарта?

14. На чем основан качественный анализ методом распределительной хроматографии на бумаге? Дайте определение Rf.

15. Каковы области применения, достоинства и недостатки а) газовой хроматографии; б) жидкостной хроматорграфии?

4. Детектор предназначен:

5. Как измеряется время удерживания по хроматограмме?

6. Площадь хроматографического пика характеризует …

8. Что такое тонкослойная хроматография?

9. Что такое Rf?

10. От чего больше зависит величина Rf?

12. В хроматографии на пластинках слой сорбента:

13. Признак ионообменной хроматографии:

Контрольные вопросы

  1. В чем сущность хроматографического процесса?

Хроматография – это физико-химический метод разделения веществ, основанный на распределении компонентов между двумя фазами – неподвижной и подвижной.

Неподвижной (стационарной) фазой обычно служит твердое вещество (сорбент) или пленка жидкости, нанесенная на твердое вещество.

Подвижная фаза (элюент) – это жидкость или газ, протекающий через неподвижную фазу, реже – сверхкритический флюид.

Хроматографический анализ является критерием однородности вещества: если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).

  1. Как классифицируют методы хроматографии по агрегатному состоянию фаз и по методике проведения эксперимента?

Хроматографические методы делят:

  1. По агрегатному состоянию фаз на газовую и жидкую хроматографию

  2. В зависимости от способа перемещения сорбатов вдоль слоя сорбента различают проявителъный (элюентный), фронтальный, вытеснителъный методы и электрохроматографию.

  3. В зависимости от природы процесса, обусловливающего распределение сорбатов между подвижной и неподвижной фазами, различают адсорбционную, распределительную, ионообменную, осадочную, аффинную и эксклюзионную хроматографию.

  4. По технике выполнения (характеру процесса) различают: колоночную хроматографию (неподвижная фаза находится в колонке); плоскостную (планарную) — бумажную и тонкослойную (неподвижная фаза — лист бумаги или тонкий слой сорбента на стеклянной или металлической пластинке); капиллярную хроматографию (разделение происходит в пленке жидкости или слое сорбента, размещенном на внутренней стенке трубки); хроматографию в полях (электрических, магнитных, центробежных и других сил)

  5. В зависимости от цели проведения хроматографического процесса различают аналитическую, неаналитическую, препаративную и промышленную хроматографию.

  1. Что такое: а) высота хроматографического пика; б) ширина хроматографического пика; в) общий удерживаемый объем; г) приведенный удерживаемый объем?

Высота пика, h - расстояние от максимума пика до его основания, измеренное вдоль оси отклика детектора


Ширина пика у основания, Wb - отрезок основания пика, отсекаемый двумя касательными, проведенными в точках перегибов восходящей и нисходящей ветвей хроматографического пика.

Ширина пика на полувысоте, Wh- отсекаемый пиком отрезок линии, проведенной параллельно основанию пика на середине его высоты.

Объем удерживания вещества, VR - объем подвижной фазы, затрачиваемой на элюирование пробы вещества. Объем удерживания определяют между точкой ввода пробы и точкой, при которой регистрируется максимум сигнала детектора.

Приведенный объем удерживания, VR - объем удерживания вещества за вычетом мертвого объема:

VR' = VR - VM

  1. Какие достоинства и недостатки газовой адсорбционной и газожидкостной хроматографии?

 Варианты газовой хроматографии — газо-жидкостная и газо-адсорбционная— имеют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи.

Преимущества газожидкостного метода Ттеред газо-адсорбционным объясняются, во-первых, возможностью широкого выбора различных по химическому строению неподвижных жидкостей, пригодных для разных практических задач, и, во-вторых, высокой чистотой и однородностью жидкостей, благодаря чему в широкой области рабочих концентраций, начиная от самых низких, изотермы растворимости практически линейны. Выбор же твердых пористых тел с поверхностями различного химического состава среди выпускаемых промышленностью адсорбентов ограничен, и эти адсорбенты геометрически и химически неоднородны.

Однако с расширением применения и развитием техники газохроматографического анализа, в частности с повышением чувствительности детекторов, расширением интервала температур работы хроматографов и с ростом применения газовой хроматографии для автоматического контроля состава смесей в промышленности и для анализа микропримесей, выявились некоторые существенные недостатки газо-жидкостной хроматографии. Это прежде всего летучесть и нестабильность жидких фаз, затрудняющие анализ микропримесей, а также анализ при высоких температурах и с программированием температуры в препаративной хроматографии эти недостатки способствуют загрязнению выделенных веществ,


5. В чем состоит метод теоретических тарелок в хроматографии?

Теория теоретических тарелок разработана для описания процесса дистилляции, однако она является общей для всех многостадийных процессов и позволяет оценить эффективность колонки.

Теория теоретических тарелок является формальной и основана на представлении, что хроматографируемое вещество проходит через слой сорбента не непрерывным потоком, а порциями, распределяясь между подвижной и неподвижной фазами на отдельных элементарных участках слоя так называемых «тарелках». Через каждую такую тарелку вещество проходит периодическими толчками. При этом предполагается, что за время каждого толчка, т. е. практически мгновенно, на тарелках успевает установиться равновесие распределения всех компонентов между подвижной и неподвижной фазами.

В хроматографической колонке, заполненной сорбентом, одна из фаз находится в непрерывном движении и полное равновесие иногда сразу не достигается. В таких случаях длина слоя, на котором достигается равновесие между двумя фазами, условно называется высотой, эквивалентной теоретической тарелке.

Теоретическая тарелка – это гипотетическая зона, высота которой соответствует достижению равновесия между двумя фазами. Чем больше теоретических тарелок – тем эффективнее колонка. Эта теория позволяет описать движение зоны с максимальной концентрацией компонента, экспериментально оценить ширину полосы (размывание) и эффективность колонки.

  1. На чем основан качественный хроматографический анализ?

Качественный хроматографический анализ, т.е. индетификация вещества по его хроматограмме, может быть выполнен сравнением хроматограических характеристик, чаще всего удерживаемого объема (т.е. объема подвижной фазы, пропущенной через колонку от начала ввода смеси до появления данного компонента на выходе из колонки), найденных при определенных условиях для компонентов анализируемой смеси и для эталона.

Точность количественного хроматографического анализа в зна-чительной степени определяется выбором наиболее рационального метода расчёта концентрации веществ. Основными методами являются:

- метод абсолютной калибровки,

- метод внутренней нормализации,

- метод внутреннего стандарта.

7. Какое практическое значение имеет газовая хроматография?


Широкое применение и большое значение газовой хроматографии в практике вызвано тем, что с ее помощью можно идентифицировать отдельные компоненты сложных газовых смесей и определять их количественно, выполнение анализа не требует больших затрат времени, и метод является достаточно универсальным.

Эффективно используется газовая хроматография в препаративных целях, физико-химических исследованиях и других областях. Методом газовой хроматографии анализируют нефтяные и рудничные газы, воздух, продукцию основной химии и промышленности органического синтеза, нефть и продукты ее переработки, многочисленные металлорганические соединения и т.д. Методы газовой хроматографии пригодны для разделения изотопов некоторых элементов, например водорода. Хроматография газов используется в биологии и медицине, в технологии переработки древесины, в лесохимии и пищевой промышленности, в технологии некоторых высокотемпературных процессов и многих других. Газовая хроматография может быть применена для анализа жидкостей после перевода их в пар в условиях работы хроматографической колонки. Необходимо отметить применение газовой хроматографии для автоматизации производственных процессов.

8. В чем сущность хроматографического разделения по методу: а) адсорбционной хроматографии; б) проникающей хроматографии; в) распределительной хроматографии; г) осадочной хроматографии; д) тонкослойной хроматографии; е) ионообменной хроматографии?

 По механизмам разделения, т.е. по характеру взаимодействия между сорбентом и сорбатом. По этой классификации хроматографию подразделяют на следующие виды:

1. адсорбционная хроматография – разделение основано на различии в адсорбируемости разделяемых веществ твердым адсорбентом;

2.      распределительная хроматография – разделение основано на различии в растворимости разделяемых веществ в неподвижной фазе (газовая хроматография) и на различии в растворимости разделяемых веществ в подвижной и неподвижной жидких фазах;

3.      ионообменная хроматография – разделение основано на различии в способности разделяемых веществ к ионному обмену;

4.  проникающая хроматография – разделение основано на различии в размерах или формах молекул разделяемых веществ, например, при применении молекулярных сит (цеолитов);

5.     осадочная хроматография – разделение основано на образовании различных по растворимости осадков разделяемых веществ с сорбентом;


6. адсорбционно-комплексообразовательная хроматография – разделение основано на образовании координационных соединений различной прочности в фазе или на поверхности адсорбента.

Тонкослойная хроматография — хроматографический метод, основанный на использовании тонкого слоя адсорбента в качестве неподвижной фазы. Он основан на том, что разделяемые вещества по-разному распределяются между сорбирующим слоем и протекающим через него элюентом, вследствие чего расстояние, на которое эти вещества смещаются по слою за одно и то же время, различается.