Файл: Классификация микропроцессоров по числу бис.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.04.2024

Просмотров: 8

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Для получения многокристального микропроцессора его логическую структуру разбивают на функционально законченные части и реализуют их в виде БИС и СБИС. Функциональная законченность означает, что МП выполняют заранее определенные функции и могут работать автономно. При этом, для построения развитого процессора не требуется организации большого числа связей и какихлибо других электронных ИС БИС.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются функционально законченные части (секции) логической структуры процессора.
По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

Разбиение логической структуры можно выполнить двумя способами.

Первый способ состоит в разделении логической структуры на функционально законченные части, например, операционное устройство (ОУ), память и устройство управления (УУ), как было сделано микропроцессоре i432(рис. 7, а)). Второй способ состоит в размещении на кристалле всех функциональных блоков (ОУ, память, УУ), но небольшой разрядности, например 2 или 4 разряда. На рис. 7, б) данный способ иллюстрируется вертикальными штриховыми линиями. Каждая микросхема дополняется входами/выходами для соединения друг с другом. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП. Секционность БИС МП определяет возможность "наращивания" разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при "параллельном" включении большего числа БИС.


Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов. Использование многокристальных микропроцессорных высокоскоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.


  1. По виду входных сигналов - различают цифровые и аналоговые микропроцессоры.

Сами МП - цифровые устройства. Поэтому для обработки аналоговых сигналов к их входу и выходу подключают внешние АЦП и ЦАП соответственно. В этом случае МП называют цифровыми.

В случае встраиваемых АЦП и ЦАП, с архитектурной точки зрения, МП называют аналоговыми. Такие МП выполняют функции любой аналоговой схемы. При этом, применение аналогового МП значительно повышает точность обработки информации.

Сами микропроцессоры цифровые устройства, могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются. После обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной "настройки" цифровой части микропроцессора на различные алгоритмы обработки сигналов.

Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций. Отличительная черта аналоговых микропроцессоров - способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения. Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратных блоков прерывания программ и программных переходов.


6. По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные МП - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные МП - микропроцессоры, позволяющие начало выполнения каждой операции определить по сигналу фактического окончания выполнения предыдущей операции.

Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

7 По организации структуры МПСразличают микроЭВМ одно- и много магистральные.

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали. Такая магистраль служит для передачи кодов данных, адресов и управляющих сигналов.

В много магистральных микроЭВМустройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям.

8. По способу управления микропроцессоры различают на микро- и макропрограммируемые.

Микропрограммноеуправление характерно для секционных МП с наращиваемой разрядностью. При этом, пользователь может установить свой собственный набор инструкций, оптимальных для реализации некоторых конкретных задач. Макропрограммное
 (жесткое аппаратное) управление принципиально не допускает такой возможности.

9. По количеству выполняемых программ МП делятся на одно- и многопрограммные микропроцессоры.

В однопрограммныхМП выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.

В многопрограммных (мультипрограммных)МП одновременно выполняется несколько (обычно до нескольких десятков) программ.
10. По разрядности МП подразделяются на МП с фиксированной разрядностью и с изменяемой разрядностью (модульные). При фиксированной разрядности имеем МП 8-, 16-, 32-, 64- разрядные МП. При модульном принципе возможно построение 8, 16, 32, 64х разрядных МП. Для этого используются секции разрядностью 2, 4, 8.

11. Технология изготовления является одним из определяющих факторов в МПС. От нее зависят параметры МП по быстродействию, температурному диапазону, потребляемой мощности, стоимости и др. Широко используются следующие технологии: pМОП, nМОП, КМОП, КМОП/КНС, И2Л, ТТЛШ, ЭСЛ.

12. Число источников питанияопределяет сложность монтажа МПС, ее габариты, надежность, стоимость. Различают МПС с одним, двумя или тремя источниками питания.

Помимо приведенной системы классификации существует и более детальная классификация МП. Например, по таким признакам, как число шин МП, организация вводавывода, число программных счетчиков, аккумуляторов, регистров общего назначения и т.д.

С другой стороны, в процессе 30-летнего развития МП произошла дифференциация микропроцессоров по функционально-структурным особенностям и областям применения. Поэтому в настоящее время более широко распространена другая система классификации.

· универсальные микропроцессоры с CISC-архитектурой;

· универсальные микропроцессоры с RISC-архитектурой;

· специализированные микропроцессоры (DSP и ряд других);

· микроконтроллеры.

О первых трёх типах говорилось выше в пункте 1 классификациию. О 4 классе – микроконтроллерах, можно сказать следующее.

Микроконтроллеры являются наиболее массовым представителем микропроцессорной техники. Интегрируя на одном кристалле высокопроизводительный процессор, память и набор периферийных устройств, микроконтроллеры позволяют с минимальными затратами реализовать большую номенклатуру систем управления различными объектами и процессами. Благодаря этому микроконтроллеры находят широкое применение в промышленной автоматике, контрольно-измерительной технике, аппаратуре связи, бытовой технике и многих других применениях. Лидером в производстве микроконтроллеров является фирма Motorola (около 17 % общемирового выпуска), в числе ведущих производителей этих изделий находятся также фирмы NEC, Mitsubishi, Hitachi, Intel, Texas Instruments, Philips.


Доминирующее положение на рынке универсальных микропроцессоров занимают микропроцессоры компании Intel и их клоны с системой команд х86. В 1999 году по предположительным оценкам таких микропроцессоров было выпущено около 100 млн. штук, и продолжение тенденций предыдущих лет указывает на возрастание выпуска на 10—15% в год.

Остальные производители универсальных микропроцессоров выпускают RISC-процессоры, суммарная доля которых составляет около 10% рынка.

В настоящее время на рынке присутствуют следующие высокопроизводительные микропроцессоры:

· Архитектура х86

- Компания Intel: линия Pentium (Р5), Pentium Pro (Р6) и процессоры на его основе Pentium II, Pentium III, Pentium 4 (и их упрощённый вариант Celeron), Merced (P7) и усовершенствованные модели IA-64;

- Компания AMD (NexGen): К5, К6 (K6-II), K7 , линия Athlon (Duron);

- Компания Cyrix: М 1, М2.

· Архитектура Power PC

- Компания Motorola: Power PC 603, 604, 620.

· Архитектура PA

- Компания HP: PA-8000.

· Архитектура Alpha

- Компания DEC: линия Alpha (21064, 21164,21164A).

· Архитектура SPARC

- Компания SUN: линия SPARC.

· Архитектура MIPS

- Компания Silicon Graphics: линия MIPS R-x(R10000).

Несмотря на разнообразие линеек микропроцессоров в военной технике наиболее применимыми являются МП с системой команд х86.

Таким образом, наиболее применимыми в технике являются МП с системой команд х86.