Файл: Вариант 1 Установка стабилизации нефтей на промысле.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.04.2024
Просмотров: 147
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Вариант № 1
Установка стабилизации нефтей на промысле
Рис.1-1.Технологическая схема установки стабилизации нефтей: 1 — трубчатая печь; 2, 13 — колонны; 3, 4, 5, И, 20 — насосы; 6, 17 — теплообменники; 7 — подогреватель; 8, 14 — холодильники-конденсаторы; 9 — газоводоотделитель; 10, 16 — редукционные клапаны; 12 — кипятильник; 15 — газосепаратор; 18 — холодильник; 19 — аппарат воздушного охлаждения.
Процесс физической стабилизации нефтей предназначен для удаления газовых компонентов. Вследствие высокого давления насыщенных паров газы выделяются из нефти при температуре окружающей среды, унося с собой ценные легкие компоненты бензиновых фракций. Ниже приведены температуры и соответствующие им давления насыщенных паров для легких углеводородов:
Температура, | 0 | 10 | 20 | 30 | 40 | 50 |
Давление, МПа | 2,31 | 2,92 | 3,65 | 4,50 | - | - |
этан | ||||||
пропан | 0,46 | 0,62 | 0,82 | 1,06 | 1,34 | 1,66 |
н-бутан | 0,10 | 0,14 | 0,20 | 0,27 | 0,37 | 0,48 |
Такое испарение наблюдается в резервуарах, при сливе и наливе нефтей и нефтепродуктов. При этом потери могут достигать 5 % (масс.). Присутствие в нефтях газов, кроме этого, способствует образованию в трубопроводах паровых пробок, которые затрудняют перекачивание.
Установки стабилизации нефтей строятся и эксплуатируются на промыслах. Для стабилизации только нефтей применяют одноколонные установки, а двухколонные установки используют для стабилизации нефти — в одной колонне и стабилизации газового бензина — в другой. Последние используют для нефтей с высоким содержанием растворенных газов —более 1,5
% (масс.).
Технологическая схема двухколонной установки стабилизации нефти приведена на рис. 1-1. Сырая нефть из резервуаров промысловых ЭЛОУ забирается сырьевым насосом 5, прокачивается через теплообменник 6, паровой подогреватель 7 и при температуре около 60°С подается под верхнюю тарелку первой стабилизационной колонны 2. Эта колонна оборудована тарелками желобчатого типа (число тарелок может быть от 16 до 26), верхняя из которых является отбойной, три нижних — смесительными. Избыточное давление в колонне от 0,2 до 0,4 МПа, что создает лучшие условия для конденсации паров бензина водой в водяном холодильнике-конденсаторе 8. Нефть, переливаясь с тарелки на тарелку, встречает более нагретые поднимающиеся пары и освобождается от легких фракций. Температура низа колонны поддерживается в пределах 130—150°С за счет тепла стабильной нефти, циркулирующей через змеевики трубчатой печи 1 с помощью насоса 3. Стабильная нефть, уходящая с низа колонны, насосом 4 прокачивается через теплообменники 6, где отдает свое тепло сырой нефти. Далее нефть проходит аппарат воздушного охлаждения 19 и поступает в резервуары стабильной нефти, откуда она и транспортируется на нефтеперерабатывающие заводы.
Смесь газов и паров, выходящая с верха колонны 2, охлаждается в холодильнике-конденсаторе 8. Газы вместе с образовавшимся конденсатом поступают в газоводоотделитель 9. Несконденсированные газы — сухой газ (в основном метан и этан) с верха газоводоотделителя выводятся с установки. На газоотводном трубопроводе ставится редукционный клапан 10, поддерживающий стабильное давление в аппарате 9 и колонне 2.
Газоводоотделитель разделен вертикальной перегородкой. Из одной половины аппарата снизу с помощью регулятора уровня, который соединен с клапаном на дренажной линии, выводится вода. Из другой половины конденсат — смесь углеводородов забирается насосом 11 и прокачивается через теплообменник 17 стабильного бензина. Здесь смесь нагревается примерно до 70 °С и с такой температурой поступает в испарительную часть стабилизационной колонны 13. Колонна имеет 30—32 желобчатые тарелки; давление в колонне поддерживается в пределах 1,3—1,5 МПа.
С верха колонны 13 уходит газ; тяжелая часть газа (пропан, бутаны) конденсируется в водяном холодильнике-конденсаторе 14 и отделяется в газосепараторе 15 от несконденсировавшейся части. Этот несконденсировавшийся газ выходит из газосепаратора сверху, проходит редукционный клапан
16 и объединяется с газом, выходящим из газоводоотделителя 9. С помощью клапана 16 давление в колонне 13 поддерживается в пределах 1,2—1,5 МПа. Сжиженный газ, отводимый с низа газосепаратора 15, направляется насосом 20 в приемник (на схеме не показан). Часть газа возвращается на верхнюю тарелку колонны 13 в виде холодного орошения, с помощью которого температура верха колонны поддерживается в пределах 40—50 °С. Для достаточно полного выделения растворенных газов температура низа колонны должна быть выше: 120— 130 °С. Такая температура обеспечивается рециркуляцией стабильного бензина через кипятильник 12 с паровым пространством. В кипятильнике бензин нагревается до 160—180 °С водяным паром (давлением 0,3—0,5 МПа). Пары, образующиеся в кипятильнике, поступают в колонну 13, а жидкость — стабильный бензин — перетекает через перегородку внутри аппарата 12 и под давлением системы проходит теплообменник 17, холодильник 18 и далее направляется в резервуар стабильного бензина (на схеме не показан).
В результате стабилизации легкой нефти из нее полностью удаляются метан, этан и на 95 % пропан, при этом давление насыщенных паров нефти при 40 °С снижается с 0,85 до 0,03 МПа, что гарантирует постоянство фракционного состава нефти при ее транспортировании и хранении.
Вариант № 2
Установка обессоливания и обезвоживания нефтей на НПЗ
Рис. 1-2. Аппаратурно-технологическая схема электрообессоливающей установки (ЭЛОУ): 1, 7, 8, 13. 14 — насосы; 2 — теплообменники; 3, 9 — подогреватели; 4, 11 — электродегидраторы; 5 — инжекторный смеситель; 6 — клапаны автоматического сброса соленой поды; 10 — диафрагмовый смеситель; 12 — отстойник; 15 — смотровой фонарь. Устройство электродегидратора: 16 — подвесные изоляторы; 17 — шины подвода электрического тока; 18 — трансформатор; 19 — коллектор обессоленной нефти; 20 — электроды; 21 — распределитель ввода сырья; 22 — коллектор соленой воды.
Содержание солей в нефтях, поступающих на нефтеперерабатывающие заводы, обычно составляет 500 мг/л, а воды —в пределах 1 % (масс.). На переработку же допускаются нефти, в которых содержание солей не превышает 20 мг/л и воды 0,1 % (масс.). Требования к ограничению содержания солей и воды в нефтях постоянно возрастают, так как только снижение содержания солей с 20 до 5 мг/л дает значительную экономию: примерно вдвое увеличивается межремонтный пробег атмосферно-вакуумных установок, сокращается расход топлива, уменьшается коррозия аппаратуры, снижаются расходы катализаторов, улучшается качество газотурбинных и котельных топлив, коксов и битумов.
Большая часть воды в поступающих на НПЗ нефтях находится в виде эмульсии, образованной капельками воды с преобладающим диаметром 2— 5 мкм. На поверхности капелек из нефтяной среды адсорбируются смолистые вещества, асфальтены, органические кислоты и их соли, растворимые в нефти, а также высокодисперсные частицы туго - плавких парафинов, ила и глины, хорошо смачиваемых нефтью. С течением времени толщина адсорбционной пленки увеличивается, возрастает ее механическая прочность, происходит старение эмульсии. Для предотвращения этого явления на многих промыслах в нефть вводят деэмульгаторы. Деэмульгаторы используют и при термохимическом, и при электрохимическом обезвоживании нефтей. Расход деэмульгаторов для каждой нефти определяется экспериментально — колеблется от 0,002 до 0,005 % (масс.) на 1 т нефти.
Разрушая поверхностную адсорбционную пленку, деэмульгаторы способствуют слиянию (коалесценции) капелек воды в более крупные капли, которые при отстое эмульсии отделяются быстрее. Этот процесс ускоряется при повышенных температурах (обычно 80—120 °С), так как при этом размягчается адсорбционная пленка и повышается ее растворимость в нефти, увеличивается скорость движения капелек и снижается вязкость нефти, т. е. улучшаются условия для слияния и оседания капель. Следует отметить, что при температурах более 120°С вязкость нефти меняется мало, поэтому эффект действия деэмульгаторов увеличивается незначительно.
Наиболее стойкие мелкодисперсные нефтяные эмульсии разрушаются с помощью электрического тока. При воздействии электрического поля капельки воды, находящиеся в неполярной жидкости, поляризуются, вытягиваются в эллипсы с противоположно заряженными концами и притягиваются друг к другу. При сближении капелек силы притяжения возрастают до величины, позволяющей сдавить и разорвать разделяющую их пленку. На практике используют переменный электрический ток частотой 50 Гц и напряжением 25—35 кВ. Процессу электрообезвоживания способствуют деэмульгаторы и повышенная температура. Во избежание испарения воды, а также в целях снижения газообразования электродегидраторы — аппараты, в которых проводится электрическое обезвоживание и обессоливание нефтей — работают при повышенном давлении. На НПЗ эксплуатируются электродегидраторы трех типов-.
цилиндрические вертикальные с круглыми горизонтальными электродами и подачей нефти в меж- электродное пространство; такие аппараты установлены на электрообессоливающих установках ЭЛОУ 10/2;
шаровые с кольцевыми электродами и подачей нефти между ними; они нашли применение на установках ЭЛОУ 10/6 (производительностью 2 млн. т нефти в год);
горизонтальные с прямоугольными электродами и подачей нефти в низ аппарата под слой отстоявшейся воды.
Характеристики электродегидраторов приведены ниже:
Показатели | Вертикальный | Шаровой ЭДШ-600 | Горизонтальный | |
1ЭГ-160 | 2ЭГ-160 | |||
Диаметр, м | 3 | 10,5 | 3,4 | 3,4 |
Объем, м3 | 30 | 600 | 160 | 160 |
Допустимая температура, | 70-80 | 100 | 110 | 160 |
Расчетное давление, МПа | 0,34 | 0,69 | 0,98 | 1,76 |
Производительность, т/ч | 10-12 | 230-250 | 180-190 | 200-250 |
Напряжение между электродами, кВ | 27-33 | 32-33 | 22-44 | 22-44 |
Напряжение электрического поля, кВ/см | 2-3 | 2-3 | 1,0-1,5 | 1,0-1,5 |
Электрообессоливающие установки проектируют двухступенчатыми: в электродегидраторах I ступени удаляется 75—80 % (масс.) соленой воды и 95— 98 % (масс.) солей, а в электродегидраторах II ступени — 60—65 % (масс.) оставшейся эмульсионной воды и примерно 92 % (масс.) оставшихся солей. Число устанавливаемых электродегидраторов при двухступенчатом обессоливании зависит от объема и качества (т. е. содержания воды, солей и стойкости эмульсий) обрабатываемой нефти, от типа и производительности аппарата. Для современных электрообессоливающих установок проектируют только горизонтальные электродегидраторы, которые входят в состав комбинированных установок ЭЛОУ—АТ и ЭЛОУ—АВТ. Преимуществами горизонтальных аппаратов являются: большая площадь электродов, следовательно, и большая удельная производительность (объем нефти на единицу сечения аппарата); меньшая вертикальная скорость движения нефти, а значит, и лучший отстой воды; возможность проведения процесса при более высоких температурах и давлениях. Подача сырой нефти в низ аппарата обеспечивает ее дополнительную промывку и прохождение через два электрических поля: слабое — между зеркалом воды и нижним электродом и сильное — между электродами. Повышение напряжения между электродами сверх допустимого (22—44 кВт) нежелательно, так как это вызывает обратный эффект — диспергирование капелек воды и увеличение стойкости эмульсии.