ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.05.2024
Просмотров: 40
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
В 20-х годах появились работы отечественного ученого Л.А. Берга, который высказал мысль о том, что эволюция носит в некоторой степени предопределенный, канализированный характер, что существуют некие запретные пути эволюции, поскольку число оптимальных решений в ходе этого процесса, видимо, бывает ограниченным (теория номогенеза).
Исходя из современных представлений, можно сказать, что в эволюции существует определенная векторизованность путей преобразования признаков, и мы можем в какой-то степени предсказать направленность эволюции.
Итак, современная теория эволюции накопила огромный арсенал новых фактов и идей, однако целостной теории, могущей заменить синтетическую теорию эволюции, пока нет и это дело будущего.
После выхода в свет основного труда Ч. Дарвина "Происхождение видов путем естественного отбора" (1859) современная биология далеко отошла не только от классического дарвинизма второй половины ХIX века, но и от ряда положений синтетической теории эволюции. Вместе с тем несомненно, что магистральный путь развития эволюционной биологии лежит в русле тех направлений, которые были заложены Дарвином.
ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ
Под генетическим полиморфизмом понимается состояние длительного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетический полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследования, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых представлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.
Чем больше запас генетического полиморфизма в данной популяции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.
Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки геля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки степени полиморфизма тех или иных белков в популяциях обычно исследуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бывают мономорфными, а другие - чрезвычайно полиморфными.
Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.
Переходный полиморфизмвозникает в популяции, когда происходит замещение аллеля, бывшего некогда обычным, другими аллелями, придающими своим носителям более высокую приспособленность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пядениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.
Сбалансированный полиморфизм характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популяциях, находящихся в стабильных условиях среды. При этом процентное соотношение форм либо из поколения в поколение остается одним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.
Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равноценными селективными преимуществами. Их соотношение в популяциях составляет 1:1. При полигамии селективное значение у представителей разных полов может отличаться и тогда представители одного пола либо уничтожаются, либо в большей степени, чем особи другого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.
Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отборили противодействует. Прослеживая судьбу мутаций в той или иной популяции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократно мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие
, когда появление и исчезновение мутировавших генов становится сбалансированным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распространена малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомозигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса
Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.
Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим условиям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, очевидно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.
ГЕНЕТИЧЕСКИЙ ГРУЗ
Генетическая гибкость (или пластичность) популяций достигается за счет мутационного процесса и комбинативной изменчивости. И хотя эволюция зависит от постоянного наличия генетической изменчивости, одно из ее последствий - это появление в популяциях слабо адаптированных особей, в результате чего приспособленность популяций всегда оказывается ниже той, которая характерна для оптимально приспособленных организмов. Это снижение средней приспособленности популяции за счет особей, приспособленность которых ниже оптимальной, называют генетическим грузом. Как писал известный английский генетик Дж. Холдейн, характеризуя генетический груз: "Это та цена, которую вынуждена платить популяция за право эволюционировать". Он был первым, кто привлек внимание
исследователей к существованию генетического груза, а сам термин "генетический груз" ввел в 40-х годах XX века Г. Миллер.
Генетический груз в его широком смысле - это всякое снижение (действительное или потенциальное) приспособленности популяции в силу генетической изменчивости. Дать количественную оценку генетического груза, определить его подлинное влияние на популяционную приспособленность - сложная задача. По предложению Ф. Г. Добжанского (1965) носителями генетического груза считаются индивидуумы, приспособленность которых более чем на два стандартных отклонения (-2а) ниже средней приспособленности гетерозигот.
Принято выделять три вида генетического груза: мутационный, субстиционный (переходный) и сбалансированный. Общий генетический груз слагается из этих трех видов груза. Мутационный груз - это та доля общего генетического груза, которая возникает за счет мутаций. Однако, поскольку большинство мутаций носят вредный характер, то естественный отбор направлен против таких аллелей и частота их невелика. Они поддерживаются в популяциях в основном благодаря вновь возникающим мутациям и гетерозиготным носителям.
Генетический груз, возникающий при динамическом изменении частот генов в популяции в процессе замены одного аллеля другим, называется субстиционный (или переходным) грузом. Такое замещение аллелей обычно происходит в ответ на какое-либо изменение в условиях среды, когда ранее неблагоприятные аллели становятся благоприятными, и, наоборот, (примером может быть явление индустриального механизма бабочек в экологически неблагополучных районах). При этом частота одного аллеля уменьшается по мере увеличения частоты другого.
Сбалансированный (устойчивый) полиморфизмвозникает, когда многие признаки поддерживаются на относительно постоянном уровне за счет уравновешивающего отбора. При этом благодаря сбалансированному (уравновешивающему) отбору, действующему в противоположных направлениях в популяциях сохраняются два или больше аллея ей какого-либо локуса, а соответственно и разные генотип и фенотипы. Примером может служить серповидноклеточность. Здесь отбор направлен против мутантного аллеля, находящегося в гомозиготном состоянии, но в то же время действует в пользу гетерозигот, сохраняя его. Состояние сбалансированного груза может быть достигнуто в следующих ситуациях: 1) отбор благоприятствует данному аллелю на одной стадии онтогенеза и направлен против него на другой; 2) отбор благоприятствует сохранению аллеля у особей одного пола и действует