Файл: Лекция 3 Средствами измерений называют применяемые при измерениях технические средства, имеющие нормированные метрологические свойства..pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.05.2024
Просмотров: 17
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Лекция №3
Средствами измерений называют применяемые при измерениях технические средства, имеющие нормированные метрологические свойства. В этом определении основную смысловую нагрузку, вскрывающую метрологическую суть средств измерений
(СИ), несут слова «нормированные метрологические свойства». Наличие нормированных метрологических свойств означает, во-первых, что средство измерений способно хранить или воспроизводить единицу (или шкалу) измеряемой величины, и, во-вторых, размер этой единицы остается неизменным в течение определенного времени.
Если бы размер единицы был нестабильным, нельзя было бы гарантировать требуемую точность результата измерений.
Отсюда следуют три вывода:
• измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, способно хранить единицу, достаточно стабильную (неизменную во времени) по размеру;
• техническое средство непосредственно после изготовления еще не является средством измерения; оно становится таковым только после передачи ему единицы от другого, более точного средства измерений (эта операция называется калибровкой);
• необходимо периодически контролировать размер единицы, хранимый средством измерения, и при необходимости восстанавливать его прежнее значение путем проведения новой калибровки.
Метрологические средства измерений называются эталонами.
Так как измеряются свойства, общие в качественном отношении многим объектам или явлениям, то эти свойства в чем-то должны проявляться, как-то должны обнаруживаться.
Технические устройства, предназначенные для обнаружения
(индикации) физических свойств, называются индикаторами. Стрелка магнитного компаса, например, — индикатор напряженности магнитного поля; осветительная электрическая лампочка — индикатор электрического напряжения в сети; лакмусовая бумага — индикатор активности ионов водорода в растворах.
С помощью индикаторов устанавливается наличие измеряемой физической величины и может регистрироваться изменение ее размера. В этом отношении индикаторы играют ту же роль, что и органы чувств человека, но значительно расширяют
их возможности. Человек, например, слышит в диапазоне частот от 16 Гц до 20 кГц, в то время как техническими средствами обнаруживаются звуковые колебания в диапазоне от инфранизких (доли герца) до ультравысоких (десятки и сотни килогерц) частот. Видят люди в узком оптическом диапазоне электромапштных волн, а инструментально регистрируются электромагнитные колебания от сверхнизкочастотных радиоволн с частотой, составляющей доли герца, до жесткого гамма-излучения с частотой порядка
1022 Гц. В то же время не создано еще технических устройств, которые могли бы соперничать с обонянием человека или животных.
Так как индикаторы должны обнаруживать проявление свойств окружающего мира, важнейшей их технической характеристикой является порог обнаружения (иногда его называют порогом чувствительности). Чем меньше порог обнаружения, тем более слабое проявление свойства регистрируется индикатором. Современные индикаторы обладают очень низкими порогами обнаружения, лежащими на уровне фоновых помех и собственных шумов аппаратуры. Последние имеют тепловую природу, поэтому для их снижения чувствительные элементы и электронные узлы особо чувствительных индикаторов охлаждают до температуры, близкой к абсолютному нулю. Селекцию
(выделение) сигналов на фоне помех осуществляют с помощью специальных фильтров и накопителей. За счет этих и некоторых других мер порог чувствительности радиотелескопов, например, в сантиметровом диапазоне радиоволн доведен до 10-18 Вт.
Индикаторы являются средствами измерений по шкале порядка. Для измерения по шкале отношений необходимо сравнить неизвестный размер с известным и выразить первый через второй в кратном или дольном отношении. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения.
Так, длину измеряют линейкой, плоский угол — транспортиром, массу с помощью гирь и весов, электрическое сопротивление — с помощью магазина сопротивлений. Если же физической величины известного размера в наличии нет, то сравнивается реакция
(отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера. Так измеряют: силу электрического тока — амперметром, электрическое напряжение — вольтметром, скорость — спидометром, давление — манометром, термодинамическую температуру — термометром и т. д. При этом предполагается, что соотношение между откликами такое же, как и между сравниваемыми размерами. Для облегчения сравнения отклик на известное воздействие еще на стадии изготовления прибора фиксируют на шкале отсчетного устройства в выбранных единицах измерений, после чего разбивают шкалу на деления в кратном и
дольном отношении. Эта процедура называется градуировкой. При измерениях она позволяет по положению указателя получать результат сравнения непосредственно на шкале отношений.
Все технические средства, предназначенные для измерений, называются средствами измерений.
Кроме индикаторов к ним относятся вещественные меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы, технические системы и устройства с измерительными функциями, стандартные образцы.
Вещественные меры предназначены для воспроизведения физической величины заданного размера, который характеризуется так называемым номинальным значением.
При условии что указывается точность, с которой воспроизводится номинальное значение физической величины, гиря является мерой массы, конденсатор — мерой емкости, кварцевый генератор — мерой частоты электрических колебаний и т. д. Различают однозначные и многозначные меры, а также наборы мер. Например, гиря и измерительный конденсатор постоянной емкости — это однозначные меры, измерительная линейка и конденсатор переменной емкости — многозначные меры, а набор гирь и набор измерительных конденсаторов являются наборами мер. Измерения методом сравнения с мерой выполняют с помощью специальных технических устройств
— компараторов. Компараторами служат равноплечие весы, измерительный мост и т. д.
Иногда в качестве компаратора выступает человек.
Измерительные преобразователи — это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения, обработки, но, как правило, недоступную для непосредственного восприятия наблюдателем. Измерительные преобразователи получили очень широкое распространение.
К ним относятся термопары, измерительные усилители, преобразователи давления и многие другие виды измерительных устройств. По месту, занимаемому в измерительной цепи, они делятся на первичные и промежуточные.
Конструктивно преобразователи являются либо отдельными блоками, либо составными частями средств измерений. Если преобразователи не входят в измерительную цепь, то они не относятся к измерительным. Таковы, например, операционный усилитель, делитель напряжения в цепи электропитания, силовой трансформатор и т. п.
Измерительный прибор представляет собой совокупность измерительных преобразователей, образующих измерительную цепь, и отсчетного устройства. В отличие от вещественной меры, прибор не воспроизводит известное значение физической величины. Измеряемая величина должна подводиться к нему и воздействовать на его первичный измерительный преобразователь.
Измерительные установки состоят из функционально объединенных средств измерений и вспомогательных устройств, собранных в одном месте. В измерительных системах эти средства и устройства территориально разобщены и соединены каналами связи. Область науки и техники, включающая вопросы получения измерительной информации и передачи ее по каналам связи, называется телеметрией. И в установках, и в системах измерительная информация может быть представлена в форме, удобной как для непосредственного восприятия, так и для автоматической обработки, передачи и использования в автоматизированных системах управления. Технические системы и устройства с измерительными функциями наряду с их основными функциями, не имеющими отношения к измерениям, выполняют еще и измерительные функции.
Стандартные образцы — образцы веществ (материалов) с установленными по результатам испытаний значениями одной и более величин, характеризующих состав или свойство этого вещества (материала).
Человек не является техническим средством, но его тоже можно отнести к средствам измерений. Первичными измерительными преобразователями у него служат органы чувств зрения, слуха, обоняния, осязания и вкуса. Измерения, выполняемые с помощью органов чувств человека, называются органолептическими измерениями. Они относятся к обширному классу экспертных измерений, или измерений экспертными методами.
Общая характеристика объектов измерений.
Основным объектом измерения в метрологии являются физические величины.
Физическая величина (в дальнейшем — «величина») применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках
(физике, химии и др.). Как известно, существуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные
свойства материального мира. Механика базируется на трех основных величинах, теплотехника — на четырех, физика — на семи. ГОСТ 8.417 устанавливает семь основных физических величин — длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.
Измеряемые величины имеют качественную и количественную характеристики.
Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim*. Размерность основных величин — длины, массы и времени
— обозначается соответствующими заглавными буквами: diml=L; dimm=М; dimt=Т.
Размерность производной величины выражается через размерность основных величин с помощью степенного одночлена. Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.
Простейший способ получения информации, который позволяет составить некоторое представление о размере измеряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например, оценивают по четырехбальной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично.
По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по двенадцатибалльной шкале, называемой международной сейсмической шкалой).
Недостатком реперных шкал является неопределенность интервалов между реперными точками. Например, по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу — алмазу, а другая наиболее мягкому — тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости. Так, если твердость алмаза по шкале 10, а кварца — 7, то это не означает, что первый тверже
второго в 1,4 раза. Определение твердости путем вдавливания алмазной пирамиды (метод
М.М. Хрущева) показывает, что твердость алмаза — 10060, а кварца — 1120, т.е. в 9 раз больше.
Более совершенна в этом отношении шкала интервалов. Примером ее может служить шкала измерения времени, которая разбита на крупные интервалы (годы), равные периоду обращения Земли вокруг Солнца; на более мелкие (сутки), равные периоду обращения
Земли вокруг своей оси. По шкале интервалов можно судить не только о том, что один размер больше другого, но и том, на сколько больше.
Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого.
Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсчета может быть выбрано произвольно.
Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул; более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда.
По шкале Цельсия интервал между этими реперами равен 273,16С. По шкале отношений можно определить не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L=1 м =100 см=1000 мм. Отмеченные три варианта являются значениями измеряемой величины — оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.
Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения: Q= X[Q] где Q — значение величины;
Х — числовое значение измеряемой величины в принятой единице;
[Q] — выбранная для измерения единица.
Допустим, измеряется длина отрезка прямой в 10 см с помощью линейки, имеющей деления в сантиметрах и миллиметрах. Для данного случая Q> — 10см при Х1 — 10и[Я1]
— 1см; Я-100мм приХ2 — 100и[Я-1мм; Q> = Q>, так как 10 см = 100 мм. Применение различных единиц (1 см и 1 мм) привело к изменению числового значения результата измерений.
Средства технических измерений подразделяются на три основные группы: меры, калибры, универсальные средства измерения (измерительные приборы, контрольно- измерительные приборы, «КИП» и системы).
Мера представляет собой средство измерений, предназначенное для воспроизведения физической величины заданного размера. К мерам относятся плоскопараллельные меры длины (плитка) и угловые меры.
Калибры представляют собой устройства, предназначенные для контроля и нахождения в заданных границах размеров, взаимного расположения поверхностей и формы деталей. К ним относятся, например, гладкие предельные калибры (скобы и пробки), резьбовые калибры (резьбовые кольца или скобы, резьбовые пробки) и т.п.
Измерительный прибор — устройство, вырабатывающее сигнал измерительной информации в форме, доступной дня непосредственного восприятия наблюдателей.
Измерительной системой называется совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединенных между собой каналами связи. Она предназначена для выработки сигналов измерительной информации в форме, удобной для автоматизированной обработки, передачи или использования в автоматических системах управления.
Универсальные средства измерения предназначены для определения действительных размеров. Этим они и отличаются от калибров, позволяющих убедиться лишь в том, что размер лежит в заданных пределах. Любое универсальное измерительное средство характеризуется назначением, принципом действия, т. е. физическим принципом, положенным в основу его построения, особенностями конструкции и метрологическими характеристиками.
По метрологическому назначению все СИ подразделяются на два вида — рабочие СИ и эталоны.
Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть:
1) лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях;
2) производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров;
3) полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.
К каждому виду РСИ предъявляются специфические требования: к лабораторным — повышенная точность и чувствительность; к производственным — повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам; к полевым — повышенная стабильность в условиях резкого перепада температур, высокой влажности.
Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы.
Систему передачи образно представляют в виде пирамиды: в основании находится совокупность
РСИ; вершину занимает государственный эталон; на промежуточных плоскостях — рабочие эталоны различных разрядов. От основания к вершине уменьшается погрешность СИ, растет их стоимость, снижается
«тираж» изготовления.
Передача размера осуществляется в процессе поверки СИ.
Целью поверки является установление пригодности
СИ к применению.
2.2 Понятие видов и методов измерений
Цель измерения — получение значения этой величины в форме, наиболее удобной для пользования. С помощью измерительного прибора сравнивают размер величины, информация о котором преобразуется в перемещение указателя, с единицей, хранимой шкалой этого прибора.
Измерения могут быть классифицированы:
· по характеристике точности — равноточные (ряд измерений какой-либо величины, выполненных одинаковыми по точности СИ и в одним и тех же условиях), неравноточные (ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях);
· по числу измерений в ряду измерений — однократные, многократные;
· по отношению к изменению измеряемой величины — статические (измерение неизменной во вре-;м<;ни физической величины, например измерение длины детали при нормальной температуре или измерение размеров земельного участка), динамические
(измерение изменяющейся по размеру физической величины, например измерение переменного напряжения электрического тока, измерение расстояния до уровня земли со снижающегося самолета);
· по выражению результата измерений — абсолютные (измерение, основанное на прямых измерениях величин и (или) использовании значений физических констант, например измерение силы F основано на измерении основной величины массы т и использовании физической постоянной — ускорения свободного падения g) и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы);
· по общим приемам получения результатов измерений — прямые (измерение, при котором искомое значение физической величины получают непосредственно, например измерение массы на весах, длины детали микрометром), косвенные (измерение, при котором искомое значение величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной, например определение твердости (ИВ) металлов путем вдавливания стального шарика определенного диаметра (D) с определенной нагрузкой (Р) и получения при этом определенной глубины отпечатка (h):
НВ = Р/ (p D • h)).
Понятие о методах измерений. Метод измерений —-прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.
Методы измерений классифицируют по нескольким признакам.
По общим приемам получения результатов измерений различают: 1) прямой метод измерений; 2) косвенный метод измерений. Первый реализуется при прямом измерении, второй — при косвенном измерении, которые описаны выше.
По условиям измерения различают контактный и бесконтактный методы измерений.
Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром). Бесконтактный метод измерений основан на том, что чувствительный элемент прибора де приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).
Исходя из способа сравнения измеряемой величины с ее единицей, различают методы непосредственной оценки и метод сравнения с мерой.
При методе непосредственной оценки определяют значение величины непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в
СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
При методе сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует ряд разновидностей этого метода: нулевой метод, метод измерений с замещением, метод совпадений [31].
Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.
Все метрологические свойства средств измерений можно разделить на две группы: свойства, определяющие область применения СИ и свойства, определяющие качество измерения.
Метрологические характеристики, определяющие область применения СИ:
– диапазон измерений – область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величин ограничивающих диапазон называют нижним и верхним пределом измерений.
– порог чувствительности – наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала.
Например, если порог чувствительности весов 10г., то заметное перемещение стрелки произойдет при изменении массы на 10г.
Метрологические характеристики, определяющие качество измерения:
– точность – свойство измерений, отражающее близость их результатов к истинному значению измеряемой величины.
– сходимость – это свойство измерений, отражающее близость друг другу результатов измерений, выполняемых в одинаковых условиях, одним и тем же средством измерения, одним и тем же оператором.
– воспроизводимость – это свойство измерений, отражающее близость друг другу результатов измерений, выполняемых в различных условиях.
Метрологические характеристики, устанавливаемые Нормативными Документами, называют нормируемыми метрологическими характеристиками.
Номенклатура нормируемых метрологических характеристик средств измерений определяется назначением, условиями эксплуатации и другими факторами. У средств измерений используемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик.
В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.
Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность.
Класс точности не является непосредственной оценкой точности измерений, выполняемых этим СИ, поскольку погрешность зависит еще от ряда факторов: метода измерений, условий измерений и т.д. Класс точности лишь позволяет судить о том, в каких пределах находится погрешность СИ данного типа.
Классы точности конкретного типа средств измерений устанавливают в нормативных документах (обозначение классов точности – условныме знаки, буквы или цифры – наносится на шкалы, щитки или корпуса приборов).
Значение физической величины получают в результате ее измерения или вычисления (параграф 1.1).
Измерение — совокупность операций, выполняемых для определения количественного значения величины [5]. Измерения могут быть классифицированы (рис.
2.1).
Виды измерений определяются физическим характером измеряемой величины, требуемой точностью измерения, необходимой скоростью измерения, условиями и режимом измерений и т.д.
Виды измерений в зависимости от их цели: контрольные, диагностические и прогностические, лабораторные и технические, эталонные и поверочные, абсолютные и относительные и т.д.
Наиболее часто используются прямые измерения. Прямое измерение — это измерение, при котором искомое значение величины получают непосредственно от средства измерений [5]. Например, длину измеряют непосредственно линейкой, температуру — термометром, силу — динамометром. При этом искомое значение величины находят из опытных данных путем экспериментального сравнения.
Если искомое значение величины находят на основании известной зависимости между этой величиной и величинами, найденными прямыми измерениями, то этот вид измерений называют косвенным. Например, объем параллелепипеда находят путем умножения трех линейных величин (длины, ширины и высоты).
Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.
Совместными называют производимые одновременно (прямые и косвенные) измерения двух или нескольких неодноименных величин. Целью этих измерений, по существу, является нахождение функциональной связи между величинами.
По отношению к изменению измеряемой величины измерения могут быть разделены на статические (измерения неизменной во времени ФВ) и динамические (измерения изменяющейся по размеру ФВ).
Рис. 2.1. Классификация видов измерения
Прямые измерения — основа более сложных измерений, и поэтому целесообразно рассмотреть методы прямых измерений.
Лекция №3
Средствами измерений называют применяемые при измерениях технические средства, имеющие нормированные метрологические свойства. В этом определении основную смысловую нагрузку, вскрывающую метрологическую суть средств измерений
(СИ), несут слова «нормированные метрологические свойства». Наличие нормированных метрологических свойств означает, во-первых, что средство измерений способно хранить или воспроизводить единицу (или шкалу) измеряемой величины, и, во-вторых, размер этой единицы остается неизменным в течение определенного времени.
Если бы размер единицы был нестабильным, нельзя было бы гарантировать требуемую точность результата измерений.
Отсюда следуют три вывода:
• измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, способно хранить единицу, достаточно стабильную (неизменную во времени) по размеру;
• техническое средство непосредственно после изготовления еще не является средством измерения; оно становится таковым только после передачи ему единицы от другого, более точного средства измерений (эта операция называется калибровкой);
• необходимо периодически контролировать размер единицы, хранимый средством измерения, и при необходимости восстанавливать его прежнее значение путем проведения новой калибровки.
Метрологические средства измерений называются эталонами.
Так как измеряются свойства, общие в качественном отношении многим объектам или явлениям, то эти свойства в чем-то должны проявляться, как-то должны обнаруживаться.
Технические устройства, предназначенные для обнаружения
(индикации) физических свойств, называются индикаторами. Стрелка магнитного компаса, например, — индикатор напряженности магнитного поля; осветительная электрическая лампочка — индикатор электрического напряжения в сети; лакмусовая бумага — индикатор активности ионов водорода в растворах.
С помощью индикаторов устанавливается наличие измеряемой физической величины и может регистрироваться изменение ее размера. В этом отношении индикаторы играют ту же роль, что и органы чувств человека, но значительно расширяют
их возможности. Человек, например, слышит в диапазоне частот от 16 Гц до 20 кГц, в то время как техническими средствами обнаруживаются звуковые колебания в диапазоне от инфранизких (доли герца) до ультравысоких (десятки и сотни килогерц) частот. Видят люди в узком оптическом диапазоне электромапштных волн, а инструментально регистрируются электромагнитные колебания от сверхнизкочастотных радиоволн с частотой, составляющей доли герца, до жесткого гамма-излучения с частотой порядка
1022 Гц. В то же время не создано еще технических устройств, которые могли бы соперничать с обонянием человека или животных.
Так как индикаторы должны обнаруживать проявление свойств окружающего мира, важнейшей их технической характеристикой является порог обнаружения (иногда его называют порогом чувствительности). Чем меньше порог обнаружения, тем более слабое проявление свойства регистрируется индикатором. Современные индикаторы обладают очень низкими порогами обнаружения, лежащими на уровне фоновых помех и собственных шумов аппаратуры. Последние имеют тепловую природу, поэтому для их снижения чувствительные элементы и электронные узлы особо чувствительных индикаторов охлаждают до температуры, близкой к абсолютному нулю. Селекцию
(выделение) сигналов на фоне помех осуществляют с помощью специальных фильтров и накопителей. За счет этих и некоторых других мер порог чувствительности радиотелескопов, например, в сантиметровом диапазоне радиоволн доведен до 10-18 Вт.
Индикаторы являются средствами измерений по шкале порядка. Для измерения по шкале отношений необходимо сравнить неизвестный размер с известным и выразить первый через второй в кратном или дольном отношении. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения.
Так, длину измеряют линейкой, плоский угол — транспортиром, массу с помощью гирь и весов, электрическое сопротивление — с помощью магазина сопротивлений. Если же физической величины известного размера в наличии нет, то сравнивается реакция
(отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера. Так измеряют: силу электрического тока — амперметром, электрическое напряжение — вольтметром, скорость — спидометром, давление — манометром, термодинамическую температуру — термометром и т. д. При этом предполагается, что соотношение между откликами такое же, как и между сравниваемыми размерами. Для облегчения сравнения отклик на известное воздействие еще на стадии изготовления прибора фиксируют на шкале отсчетного устройства в выбранных единицах измерений, после чего разбивают шкалу на деления в кратном и
1022 Гц. В то же время не создано еще технических устройств, которые могли бы соперничать с обонянием человека или животных.
Так как индикаторы должны обнаруживать проявление свойств окружающего мира, важнейшей их технической характеристикой является порог обнаружения (иногда его называют порогом чувствительности). Чем меньше порог обнаружения, тем более слабое проявление свойства регистрируется индикатором. Современные индикаторы обладают очень низкими порогами обнаружения, лежащими на уровне фоновых помех и собственных шумов аппаратуры. Последние имеют тепловую природу, поэтому для их снижения чувствительные элементы и электронные узлы особо чувствительных индикаторов охлаждают до температуры, близкой к абсолютному нулю. Селекцию
(выделение) сигналов на фоне помех осуществляют с помощью специальных фильтров и накопителей. За счет этих и некоторых других мер порог чувствительности радиотелескопов, например, в сантиметровом диапазоне радиоволн доведен до 10-18 Вт.
Индикаторы являются средствами измерений по шкале порядка. Для измерения по шкале отношений необходимо сравнить неизвестный размер с известным и выразить первый через второй в кратном или дольном отношении. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения.
Так, длину измеряют линейкой, плоский угол — транспортиром, массу с помощью гирь и весов, электрическое сопротивление — с помощью магазина сопротивлений. Если же физической величины известного размера в наличии нет, то сравнивается реакция
(отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера. Так измеряют: силу электрического тока — амперметром, электрическое напряжение — вольтметром, скорость — спидометром, давление — манометром, термодинамическую температуру — термометром и т. д. При этом предполагается, что соотношение между откликами такое же, как и между сравниваемыми размерами. Для облегчения сравнения отклик на известное воздействие еще на стадии изготовления прибора фиксируют на шкале отсчетного устройства в выбранных единицах измерений, после чего разбивают шкалу на деления в кратном и
дольном отношении. Эта процедура называется градуировкой. При измерениях она позволяет по положению указателя получать результат сравнения непосредственно на шкале отношений.
Все технические средства, предназначенные для измерений, называются средствами измерений.
Кроме индикаторов к ним относятся вещественные меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы, технические системы и устройства с измерительными функциями, стандартные образцы.
Вещественные меры предназначены для воспроизведения физической величины заданного размера, который характеризуется так называемым номинальным значением.
При условии что указывается точность, с которой воспроизводится номинальное значение физической величины, гиря является мерой массы, конденсатор — мерой емкости, кварцевый генератор — мерой частоты электрических колебаний и т. д. Различают однозначные и многозначные меры, а также наборы мер. Например, гиря и измерительный конденсатор постоянной емкости — это однозначные меры, измерительная линейка и конденсатор переменной емкости — многозначные меры, а набор гирь и набор измерительных конденсаторов являются наборами мер. Измерения методом сравнения с мерой выполняют с помощью специальных технических устройств
— компараторов. Компараторами служат равноплечие весы, измерительный мост и т. д.
Иногда в качестве компаратора выступает человек.
Измерительные преобразователи — это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения, обработки, но, как правило, недоступную для непосредственного восприятия наблюдателем. Измерительные преобразователи получили очень широкое распространение.
К ним относятся термопары, измерительные усилители, преобразователи давления и многие другие виды измерительных устройств. По месту, занимаемому в измерительной цепи, они делятся на первичные и промежуточные.
Конструктивно преобразователи являются либо отдельными блоками, либо составными частями средств измерений. Если преобразователи не входят в измерительную цепь, то они не относятся к измерительным. Таковы, например, операционный усилитель, делитель напряжения в цепи электропитания, силовой трансформатор и т. п.
Все технические средства, предназначенные для измерений, называются средствами измерений.
Кроме индикаторов к ним относятся вещественные меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы, технические системы и устройства с измерительными функциями, стандартные образцы.
Вещественные меры предназначены для воспроизведения физической величины заданного размера, который характеризуется так называемым номинальным значением.
При условии что указывается точность, с которой воспроизводится номинальное значение физической величины, гиря является мерой массы, конденсатор — мерой емкости, кварцевый генератор — мерой частоты электрических колебаний и т. д. Различают однозначные и многозначные меры, а также наборы мер. Например, гиря и измерительный конденсатор постоянной емкости — это однозначные меры, измерительная линейка и конденсатор переменной емкости — многозначные меры, а набор гирь и набор измерительных конденсаторов являются наборами мер. Измерения методом сравнения с мерой выполняют с помощью специальных технических устройств
— компараторов. Компараторами служат равноплечие весы, измерительный мост и т. д.
Иногда в качестве компаратора выступает человек.
Измерительные преобразователи — это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения, обработки, но, как правило, недоступную для непосредственного восприятия наблюдателем. Измерительные преобразователи получили очень широкое распространение.
К ним относятся термопары, измерительные усилители, преобразователи давления и многие другие виды измерительных устройств. По месту, занимаемому в измерительной цепи, они делятся на первичные и промежуточные.
Конструктивно преобразователи являются либо отдельными блоками, либо составными частями средств измерений. Если преобразователи не входят в измерительную цепь, то они не относятся к измерительным. Таковы, например, операционный усилитель, делитель напряжения в цепи электропитания, силовой трансформатор и т. п.
Измерительный прибор представляет собой совокупность измерительных преобразователей, образующих измерительную цепь, и отсчетного устройства. В отличие от вещественной меры, прибор не воспроизводит известное значение физической величины. Измеряемая величина должна подводиться к нему и воздействовать на его первичный измерительный преобразователь.
Измерительные установки состоят из функционально объединенных средств измерений и вспомогательных устройств, собранных в одном месте. В измерительных системах эти средства и устройства территориально разобщены и соединены каналами связи. Область науки и техники, включающая вопросы получения измерительной информации и передачи ее по каналам связи, называется телеметрией. И в установках, и в системах измерительная информация может быть представлена в форме, удобной как для непосредственного восприятия, так и для автоматической обработки, передачи и использования в автоматизированных системах управления. Технические системы и устройства с измерительными функциями наряду с их основными функциями, не имеющими отношения к измерениям, выполняют еще и измерительные функции.
Стандартные образцы — образцы веществ (материалов) с установленными по результатам испытаний значениями одной и более величин, характеризующих состав или свойство этого вещества (материала).
Человек не является техническим средством, но его тоже можно отнести к средствам измерений. Первичными измерительными преобразователями у него служат органы чувств зрения, слуха, обоняния, осязания и вкуса. Измерения, выполняемые с помощью органов чувств человека, называются органолептическими измерениями. Они относятся к обширному классу экспертных измерений, или измерений экспертными методами.
Общая характеристика объектов измерений.
Основным объектом измерения в метрологии являются физические величины.
Физическая величина (в дальнейшем — «величина») применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках
(физике, химии и др.). Как известно, существуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные
свойства материального мира. Механика базируется на трех основных величинах, теплотехника — на четырех, физика — на семи. ГОСТ 8.417 устанавливает семь основных физических величин — длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.
Измеряемые величины имеют качественную и количественную характеристики.
Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim*. Размерность основных величин — длины, массы и времени
— обозначается соответствующими заглавными буквами: diml=L; dimm=М; dimt=Т.
Размерность производной величины выражается через размерность основных величин с помощью степенного одночлена. Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.
Простейший способ получения информации, который позволяет составить некоторое представление о размере измеряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например, оценивают по четырехбальной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично.
По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по двенадцатибалльной шкале, называемой международной сейсмической шкалой).
Недостатком реперных шкал является неопределенность интервалов между реперными точками. Например, по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу — алмазу, а другая наиболее мягкому — тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости. Так, если твердость алмаза по шкале 10, а кварца — 7, то это не означает, что первый тверже
Измеряемые величины имеют качественную и количественную характеристики.
Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim*. Размерность основных величин — длины, массы и времени
— обозначается соответствующими заглавными буквами: diml=L; dimm=М; dimt=Т.
Размерность производной величины выражается через размерность основных величин с помощью степенного одночлена. Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.
Простейший способ получения информации, который позволяет составить некоторое представление о размере измеряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например, оценивают по четырехбальной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично.
По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по двенадцатибалльной шкале, называемой международной сейсмической шкалой).
Недостатком реперных шкал является неопределенность интервалов между реперными точками. Например, по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу — алмазу, а другая наиболее мягкому — тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости. Так, если твердость алмаза по шкале 10, а кварца — 7, то это не означает, что первый тверже
второго в 1,4 раза. Определение твердости путем вдавливания алмазной пирамиды (метод
М.М. Хрущева) показывает, что твердость алмаза — 10060, а кварца — 1120, т.е. в 9 раз больше.
Более совершенна в этом отношении шкала интервалов. Примером ее может служить шкала измерения времени, которая разбита на крупные интервалы (годы), равные периоду обращения Земли вокруг Солнца; на более мелкие (сутки), равные периоду обращения
Земли вокруг своей оси. По шкале интервалов можно судить не только о том, что один размер больше другого, но и том, на сколько больше.
Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого.
Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсчета может быть выбрано произвольно.
Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул; более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда.
По шкале Цельсия интервал между этими реперами равен 273,16С. По шкале отношений можно определить не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L=1 м =100 см=1000 мм. Отмеченные три варианта являются значениями измеряемой величины — оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.
Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения: Q= X[Q] где Q — значение величины;
Х — числовое значение измеряемой величины в принятой единице;
[Q] — выбранная для измерения единица.
Допустим, измеряется длина отрезка прямой в 10 см с помощью линейки, имеющей деления в сантиметрах и миллиметрах. Для данного случая Q> — 10см при Х1 — 10и[Я1]
— 1см; Я-100мм приХ2 — 100и[Я-1мм; Q> = Q>, так как 10 см = 100 мм. Применение различных единиц (1 см и 1 мм) привело к изменению числового значения результата измерений.
Средства технических измерений подразделяются на три основные группы: меры, калибры, универсальные средства измерения (измерительные приборы, контрольно- измерительные приборы, «КИП» и системы).
М.М. Хрущева) показывает, что твердость алмаза — 10060, а кварца — 1120, т.е. в 9 раз больше.
Более совершенна в этом отношении шкала интервалов. Примером ее может служить шкала измерения времени, которая разбита на крупные интервалы (годы), равные периоду обращения Земли вокруг Солнца; на более мелкие (сутки), равные периоду обращения
Земли вокруг своей оси. По шкале интервалов можно судить не только о том, что один размер больше другого, но и том, на сколько больше.
Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого.
Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсчета может быть выбрано произвольно.
Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул; более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда.
По шкале Цельсия интервал между этими реперами равен 273,16С. По шкале отношений можно определить не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L=1 м =100 см=1000 мм. Отмеченные три варианта являются значениями измеряемой величины — оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.
Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения: Q= X[Q] где Q — значение величины;
Х — числовое значение измеряемой величины в принятой единице;
[Q] — выбранная для измерения единица.
Допустим, измеряется длина отрезка прямой в 10 см с помощью линейки, имеющей деления в сантиметрах и миллиметрах. Для данного случая Q> — 10см при Х1 — 10и[Я1]
— 1см; Я-100мм приХ2 — 100и[Я-1мм; Q> = Q>, так как 10 см = 100 мм. Применение различных единиц (1 см и 1 мм) привело к изменению числового значения результата измерений.
Средства технических измерений подразделяются на три основные группы: меры, калибры, универсальные средства измерения (измерительные приборы, контрольно- измерительные приборы, «КИП» и системы).
Мера представляет собой средство измерений, предназначенное для воспроизведения физической величины заданного размера. К мерам относятся плоскопараллельные меры длины (плитка) и угловые меры.
Калибры представляют собой устройства, предназначенные для контроля и нахождения в заданных границах размеров, взаимного расположения поверхностей и формы деталей. К ним относятся, например, гладкие предельные калибры (скобы и пробки), резьбовые калибры (резьбовые кольца или скобы, резьбовые пробки) и т.п.
Измерительный прибор — устройство, вырабатывающее сигнал измерительной информации в форме, доступной дня непосредственного восприятия наблюдателей.
Измерительной системой называется совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединенных между собой каналами связи. Она предназначена для выработки сигналов измерительной информации в форме, удобной для автоматизированной обработки, передачи или использования в автоматических системах управления.
Универсальные средства измерения предназначены для определения действительных размеров. Этим они и отличаются от калибров, позволяющих убедиться лишь в том, что размер лежит в заданных пределах. Любое универсальное измерительное средство характеризуется назначением, принципом действия, т. е. физическим принципом, положенным в основу его построения, особенностями конструкции и метрологическими характеристиками.
По метрологическому назначению все СИ подразделяются на два вида — рабочие СИ и эталоны.
Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть:
1) лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях;
2) производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров;
3) полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.
К каждому виду РСИ предъявляются специфические требования: к лабораторным — повышенная точность и чувствительность; к производственным — повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам; к полевым — повышенная стабильность в условиях резкого перепада температур, высокой влажности.
Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы.
Систему передачи образно представляют в виде пирамиды: в основании находится совокупность
РСИ; вершину занимает государственный эталон; на промежуточных плоскостях — рабочие эталоны различных разрядов. От основания к вершине уменьшается погрешность СИ, растет их стоимость, снижается
«тираж» изготовления.
Передача размера осуществляется в процессе поверки СИ.
Целью поверки является установление пригодности
СИ к применению.
2.2 Понятие видов и методов измерений
Цель измерения — получение значения этой величины в форме, наиболее удобной для пользования. С помощью измерительного прибора сравнивают размер величины, информация о котором преобразуется в перемещение указателя, с единицей, хранимой шкалой этого прибора.
Измерения могут быть классифицированы:
· по характеристике точности — равноточные (ряд измерений какой-либо величины, выполненных одинаковыми по точности СИ и в одним и тех же условиях), неравноточные (ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях);
· по числу измерений в ряду измерений — однократные, многократные;
· по отношению к изменению измеряемой величины — статические (измерение неизменной во вре-;м<;ни физической величины, например измерение длины детали при нормальной температуре или измерение размеров земельного участка), динамические
(измерение изменяющейся по размеру физической величины, например измерение переменного напряжения электрического тока, измерение расстояния до уровня земли со снижающегося самолета);
· по выражению результата измерений — абсолютные (измерение, основанное на прямых измерениях величин и (или) использовании значений физических констант, например измерение силы F основано на измерении основной величины массы т и использовании физической постоянной — ускорения свободного падения g) и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы);
· по общим приемам получения результатов измерений — прямые (измерение, при котором искомое значение физической величины получают непосредственно, например измерение массы на весах, длины детали микрометром), косвенные (измерение, при котором искомое значение величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной, например определение твердости (ИВ) металлов путем вдавливания стального шарика определенного диаметра (D) с определенной нагрузкой (Р) и получения при этом определенной глубины отпечатка (h):
НВ = Р/ (p D • h)).
Понятие о методах измерений. Метод измерений —-прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.
Методы измерений классифицируют по нескольким признакам.
По общим приемам получения результатов измерений различают: 1) прямой метод измерений; 2) косвенный метод измерений. Первый реализуется при прямом измерении, второй — при косвенном измерении, которые описаны выше.
По условиям измерения различают контактный и бесконтактный методы измерений.
Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром). Бесконтактный метод измерений основан на том, что чувствительный элемент прибора де приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).
Исходя из способа сравнения измеряемой величины с ее единицей, различают методы непосредственной оценки и метод сравнения с мерой.
При методе непосредственной оценки определяют значение величины непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в
СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
При методе сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует ряд разновидностей этого метода: нулевой метод, метод измерений с замещением, метод совпадений [31].
Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.
Все метрологические свойства средств измерений можно разделить на две группы: свойства, определяющие область применения СИ и свойства, определяющие качество измерения.
Метрологические характеристики, определяющие область применения СИ:
– диапазон измерений – область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величин ограничивающих диапазон называют нижним и верхним пределом измерений.
– порог чувствительности – наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала.
Например, если порог чувствительности весов 10г., то заметное перемещение стрелки произойдет при изменении массы на 10г.
Метрологические характеристики, определяющие качество измерения:
– точность – свойство измерений, отражающее близость их результатов к истинному значению измеряемой величины.
– сходимость – это свойство измерений, отражающее близость друг другу результатов измерений, выполняемых в одинаковых условиях, одним и тем же средством измерения, одним и тем же оператором.
– воспроизводимость – это свойство измерений, отражающее близость друг другу результатов измерений, выполняемых в различных условиях.
Метрологические характеристики, устанавливаемые Нормативными Документами, называют нормируемыми метрологическими характеристиками.
Номенклатура нормируемых метрологических характеристик средств измерений определяется назначением, условиями эксплуатации и другими факторами. У средств измерений используемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик.
В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.
Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность.
Класс точности не является непосредственной оценкой точности измерений, выполняемых этим СИ, поскольку погрешность зависит еще от ряда факторов: метода измерений, условий измерений и т.д. Класс точности лишь позволяет судить о том, в каких пределах находится погрешность СИ данного типа.
Классы точности конкретного типа средств измерений устанавливают в нормативных документах (обозначение классов точности – условныме знаки, буквы или цифры – наносится на шкалы, щитки или корпуса приборов).
Значение физической величины получают в результате ее измерения или вычисления (параграф 1.1).
Измерение — совокупность операций, выполняемых для определения количественного значения величины [5]. Измерения могут быть классифицированы (рис.
2.1).
Виды измерений определяются физическим характером измеряемой величины, требуемой точностью измерения, необходимой скоростью измерения, условиями и режимом измерений и т.д.
Виды измерений в зависимости от их цели: контрольные, диагностические и прогностические, лабораторные и технические, эталонные и поверочные, абсолютные и относительные и т.д.
Наиболее часто используются прямые измерения. Прямое измерение — это измерение, при котором искомое значение величины получают непосредственно от средства измерений [5]. Например, длину измеряют непосредственно линейкой, температуру — термометром, силу — динамометром. При этом искомое значение величины находят из опытных данных путем экспериментального сравнения.
Если искомое значение величины находят на основании известной зависимости между этой величиной и величинами, найденными прямыми измерениями, то этот вид измерений называют косвенным. Например, объем параллелепипеда находят путем умножения трех линейных величин (длины, ширины и высоты).
Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.
Совместными называют производимые одновременно (прямые и косвенные) измерения двух или нескольких неодноименных величин. Целью этих измерений, по существу, является нахождение функциональной связи между величинами.
По отношению к изменению измеряемой величины измерения могут быть разделены на статические (измерения неизменной во времени ФВ) и динамические (измерения изменяющейся по размеру ФВ).
Рис. 2.1. Классификация видов измерения
Прямые измерения — основа более сложных измерений, и поэтому целесообразно рассмотреть методы прямых измерений.