Файл: Мучник, В. М. Физика грозы.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 15.10.2024

Просмотров: 120

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

240.

В г а h а m R.

R. Cirrus cloud

seeding

as

a trigger

for

storm develop­

ment.— J. Atmos. Sei.,

1967, v. 24, No. 3, p. 311—312.

 

J.

H.

Possibilities for ■

241.

В r a h a m R.

R., R e y n o l d s

S. E.,

H a r r e l l

cloud seeding as determined

by a study of cloud

height

versus

precipitation.—

J. Met.,

1951, V. 8, No. 6, p. 416—418.

 

J. Numerical

computations of the

242.

B r a z i e r - S m i t h

P. R., L a t h a m

dynamics of the disintegration of a drop situated in an electric field.— Proc. Roy.

Soc., A,

1969, V. 312,

No. 1509, p. 277—289.

 

 

basse atmosphere.— J.

Geophys.

 

243.

B r i c a r d

J.

L ’equilibre

ionique de la

Res.,

1949, v. 54, No. 1, p. 39—52.

 

 

of charge separation during ice—ice con­

 

244.

B r o o k M .

Laboratory

studies

tact.— In: Recent

advances

in atmospheric electricity.

L.,

Pergamon

Press,

1958,

p. 383—389.

 

M.,

H o l m e s

C.

R.,

M o o r e

С.

B.

Lightning

and

rockets:

 

245.

B r o o k

some

implications

of

the

Apollo

12

lightning

event.— Nav.

Res.,

1970,

v.

23,

No. 4, p. 1— 17.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

246.

B r o o k

M.,

K i t a g a w a

N.,

W o r k m a n

E.

J.

Quantitative

study

of strokes and continuing currents in lightning discharges to

ground.— J. Geophys.

Res.,

1962, V. 67, No. 2, p. 649—659.

 

J.

F. P. The coalescence of water drops.—

 

247.

B r o w n e

I. C , H u d s o n

Quart. J.

Roy. Met. Soc., 1957, v. 83, No. 357, p. 386—387.

 

 

 

 

 

 

 

 

 

248.

B r o w n i n g

K. A. On the structure and growth of some giant hail­

stones.— In: Proc. Int. Conf. Cloud Phys. Tokyo,

1965, p. 276—280.

 

 

 

 

 

 

249.

B r o w n i n g

K. A.,

D o n a l d s o n

R. J. Airflow

and

structure

of

a tor-

nadic storm.— J. Atmos. Sei.,

1963, v. 20, No. 6, p. 553—545.

in

convective

storms.—

 

250.

B r o w n i n g

K.

A., L

u d 1 a m F.

H.

Airflow

Quart. J.

Roy. Met. Soc., 1962, v. 88, No. 376, p. 117— 136.

 

and

field studies

of

 

251.

B r o w n s c o m b e

J. L.,

H a l l e t

J.

Experimental

precipitation

particles

formed by the freezing of supercooled

water.— Quart.

J.

Roy. Met. Soc., 1967, v. 93,

No. 398,

p. 455—473.

 

N.

S. C.

The

freezing of wa­

ter

252.

B r o w n s c o m b e

 

J. L.,

T h o r n d i k e

droplets

in free

fall.— In:

Proc.

Int.

Conf.

Cloud

 

Phys.

Toronto,

1968,

p.

280—284.

 

G.

W.,

F l e t c h e r

N. H. Thermoelectric power of ice con­

 

253.

B r y a n t

taining H F or N H 3.— Phil. Mag.,

1965, v.

12, No. 115, p. 165— 176.

 

affecting

the

 

254.

B u r r o w s

D. A.,

H o b b s

P.

V ,

S c o t t

W. D. Factors

electric charge acquired by an icesphere moving through natural snowfall.— Mon.

Weath. Rev, 1967, v.

95, No. 12, p. 878—883.

Thunderstorm

structure

and

circula­

255. B y e r s

H.

R ,

В r a h a m

R.

R.

tion.— J. Met, 1948, V. 5, No. 3, p. 71—86.

 

 

 

 

 

 

 

 

 

 

 

256. B y e r s

H.

R ,

В r a h am

R.

R.

The

thunderstorm. Washington,

1949.

287 p.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

257. B y e r s

H. R ,

В r a h a m

R. R. The

structure

and

dynamic

of

thunder­

storms.— In: Thunderstorm electricity. Chicago,

1953, p. 3—27.

1961,

v. 77,

No. 495,

258. C a r t e A. E. Air

bubbles in ice.— Proc. Phys. Soc,

p. 757—769.

 

J. A. Electric charges from ice friction.— J. Atmos. Terr.

259. C h a l m e r s

Phys, 1952, V. 2, No. 6, p. 337—339.

 

 

 

 

 

 

 

 

 

 

 

 

260. C h a l m e r s

J. A. The relation of point-discharge current to potential

difference and wind-speed.— J. Atmos. Terr. Phys, 1962, v. 24, No. 3,

p. 339—344.

261. C h a l m e r s

J.

A. On the conductivity of the

air

in

thunderstorms.—

J. Geophys. Res,

1964, v.

69, No. 2, p. 357—359.

 

 

charges

of

single

rain­

262. C h a l m e r s

J.

A , P a s q u i l l

F.

The electric

drops and snowflakes.— Proc. Phys. Soc,

1938, v. 50, No.

277,

p.

1— 15.

 

Proc.

263. C h a p m a n

S.

Hydrometeors

and

thunderstorm

electricity.— In:

Conf. Thunder. Elect.

Chicago, 1950, p. 149— 182.

 

 

 

 

 

 

 

 

264. C h a p m a n

S. Corona-point-discharge in wind and application to thun­

derclouds.— In: Recent advances in atmospheric electricity.

L ,

Pergamon

Press,

1958,

p. 277—287.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

265. C h r i s t i a n s e n

C. Elektrizitätserregung beim

Zerspritzen

von

Flüssig­

keiten

(Balloelektrizität).— Ann. d.

Phvs,

1913, Bd. 40,

Nr.

1,

S.

107— 137.

335


 

266.

C l a r k

J.

F. The lair-weather atmospheric electric potential and its gra­

dient.— In: Recent

advances in

atmospheric

electricity.

L.,

Pergamon

Press,

1958,

p.

61—73.

W.

E.,

P h i l l i p s

В.

B.,

A l l e e

P.

A.

Note on

mountain-top

 

267.

C o b b

measurements of atmospheric electricity in northwestern

United

States.— Mon.

Weath. Rev., 1967, v. 95, No. 12, p. 912—916.

 

lightning strikes

to aircraft.—

 

268.

C o b b

W. E.,

H о 1 i t z a

F. J. A

 

note on

Mon. Weath. Rev.,

1968, v. 96, No. 11, p. 807—808.

d'eau chargee

dans

un

nuage

 

269.

C o c h e t

R.

Evolution

d’une

gouttelette

a temperature positive.— Ann. Geophys.,

1952, v. 8, n° 1, p. 33—54.

 

von

Gasen

 

2/0. C o e h n

A.,

M o z e r

H.

Uber

 

die

Berührungselektrizität

gegen

leitende

und nichtleitende

Flüssigkeiten.— Ann.

d.

Phys.,

1914,

Bd.

43,

Nr. 7,

S. 1048—1078.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

271.

C o l g a t e

S.

A.,

R o m e r o

J. M. Charge versus dropsize

in

an

elect­

rified

cloud.— J. Geophys. Res., 1970, v.

75, No. 30, p. 5873—5881.

 

 

 

 

 

 

272.

C o t t o n

W.

R.,

G o k h a l e

N.

R.

Collision,

coalescence

and

break-up

of

large

water

drops

in a

vertical

wind

tunnel.— J. Geophys.

Res.,

1967,

v.

72,

No. 16,

p. 4041—4049.

H y l a n d

M. Aircraft

measurements

of

the

ratio

of

nega­

 

273.

C u r t i s

H.,

tive to positive conductivity.— In: Recent advances in atmospheric electricity. L.,

Pergamon Press,

1958,

p. I l l — 117.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

274.

D a v i s

M.

H. Two charged

 

spherical

 

conductors

in

a

 

uniform

electric

field: forces and

field

 

strength.— Quart. J. Mech. Appl. Math.,

1964, v.

17, No. 4,

p. 499—511.

M. H. Collisions of

very

small

cloud

drops.— J.

Geophys.

Res.,

275.

D a v i s

1966, V. 71, No. 12, p. 3101—3104.

J. D. Fast growth

rates

for

cloud droplets

due

276.

D a v i s

M. H., S a r t o r

to electrical forces

in

thunderstorms.— In:

Planetary

Electrodynamics. V.

 

1.

N. Y.,

Gordon and Breach Sei., Publ., 1970, p. 339—343.

 

 

 

 

 

 

 

in the

presence

277.

D a w s o n

G. A. The Rayleigh instability of water drops

of external fields.— J. Geophys. Res.,

1970,

v. 75,

No. 3, p. 701—705.

 

 

 

 

278.

D a w s o n

G. A. Electrical corona from water-drop

surfaces.— J.

Geo­

phys. Res., 1970, V.

75, No. 12, p. 2153—2158.

 

 

 

 

 

 

 

 

 

 

 

 

279.

D i n g e r

J. E. Electrification accompanying melting of ice and snow.—

Quart. J. Roy. Met.

Soc., 1964, v. 90, No. 384, p. 208.

 

 

 

 

 

 

 

 

 

 

280.

D i n g e r

J. E. Electrification associated with the melting of snow and

ice.— J. Atmos. Sei., 1965, v. 22, No. 2,

p. 162— 166.

 

associated

with

a

change

of slate

D i n g e r

J.

 

E.,

G u n n

R.

Electrical

effects

of water.— Terr. Magn.

Atmos.

Elect.,

 

1946,

v. 51, No.

4, p.

477—496.

282.

D o d d E.

E.

The

statistics

of

liquid

spray and

dust

electrification

by

Hopper

and Lady

method.— J. Appl. Phys.,

1953,

v. 24,

No. 1,

p.

73—80.

velocity

283.

D o n a l d s o n

R.

I., C h m e l a

 

A. C.

Distribution

of

vertical

mean

and variance

in

 

a

thunderstorm .— In: Proc. 13th

Radar

Met. Conf. Boston,

1968,

p. 492—497.

A.,

M o f f e t t

D. R.,

V o n n e g u t

B. Behavior

of evaporating

284.

D o y l e

electrically charged

droplets.— J.

Coll.

 

Sei.,

1964,

v.

19,

No. 2,

p.

136— 143.

 

 

285.

D r a g i n i s

 

M.

Liquid

water

within

convective

clouds.— J. Met.,

1958,

V.15, No. 6, p. 481—485.

286.D г a к e J. C. Electrification accompanying the melting of ice particles.— Quart. J. Roy. Met. Soc., 1968, v. 94, No. 400, p. 176— 191.

287.

D y e

J.

E.,

H o b b s

P.

V.

Effect of carbon dioxide on the

shattering

of freezing water drops.— Nature, 1966, v. 209, No. 5022, p. 464—466.

factor in

288.

E a s t

T.

W„

M a r s h a l l

J. S. Turbulence in clouds

as a

precipitation.— Quart. J.

Roy. Met.

Soc., 1954, v. 80, No. 343, p.

26—47.

 

289.

E b e r t

H.,

H o f f m a n

B.

A. Elektrizitätserregung

in

flüssiger Luft.—

Ann. d. Phys.,

1900,

Bd. 2, Nr. 8, S. 706—718.

 

die

elektrische

Natur

290.

E l s t e r

J.

G e i t e l

H. Beobachtungen, betreffend

der atmosphärischen

Niederschläge.— Sitzungsgber. Acad.

Wiss.

Wien,

2a,

1890,

Bd. 99,

S. 421—439.

G e i t e l

H.

Zur Influeztheorie der

Niederschlags — elektri-

291.

E l s t e r

J.,

zität.— £hys. Zs.,

1913,

Bd. 14,

Nr.

25,

S. 1287—1292.

 

 

 

 

 

336


 

 

292.

E n g l i s h

W. N. Corona

from a water

drop.— Phys. Rev., 1948,

v. 74,

No. 2,

p.

179— 189.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

293.

E v a n s

W.

H.

Electric

fields

and

conductivity

in

thunderclouds.—

J. Geophys. Res., 1969, v. 74, No. 4, p. 939—948.

 

 

 

 

 

 

 

 

 

 

 

 

294.

E v a n s

D.

G. p H u t c h i n s o n

W. C. A. The

electrification

of

freezing

water

droplets and

of

colliding

ice

particles.— Quart.

J.

Roy.

Met.

Soc.,

1963,

V.

89,

No.

381,

p.

370—375.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

295.

F e t e r i s

P.

330.000 ft hail damage in fifteen minutes, analysis of a

devastating

hailstorm.— Weather,

1955,

v.

10,

No. 7,

p. 223—232.

 

 

 

 

 

 

296.

F i n d e i s e n

W. Messungen der Grösse und Anzahl der Nebeltropfen

zum Studium der Koagulation inhomogenen

Nebels.— Gerlands

Beitr.

Geophys.,

1932, Bd. 35, Nr. 3/4, S. 295—340.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

297.

F i n d e i s e n

W.

Ober

die

Entstehung

der

Gewitterelektrizität.— Met.

Zs.,

1940, Bd. 57, Nr. 6,

S. 201—215.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tain

298.

F i t z g e r a l d

D. R. Probable aircraft “triggering” of lightning in cer­

thunderstorms.— Mon. Weath. Rev.,

1967,

v. 95,

No. 12,

p. 835—842.

 

 

 

 

299.

F i t z g e r a l d

D.

R., B y e r s

H. R. Aircraft

observations of

convective

cloud electrification.— In: Recent advances in atmospheric

 

electricity.

L.,

Perga­

mon

Press, 1958, p. 245—268.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300.

F a s t e r H. An unusual

observation

of

lightning.— Bull. Amer. Met. Soc.,

1950, V. 31,

No. 4, p. 140—141.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300a. F o u - r n i e r

D ’ A 1 b e

E.

 

M.,

H i d a у e t u 1 1 a

 

M. S. The break-up

of

large

water

drops

falling at terminal velocity in

free

 

air.— Quart.

J.

Roy.

Met. Soc., 1955, v. 81, No. 350, p. 610—613.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

301.

F r e i e r

G. The coalescence

of

water

drops

in

an

electric field.— J. Geo­

phys. Res.,

1960, V. 65, No. 12, p. 3979—3986.

 

 

 

 

 

 

 

 

 

 

 

 

 

302.

F r e i e r

G. Conductivity

of

air

in

thunderstorms.— J.

Geophys.

Res.,

1962, V. 67, No. 12, p. 4683—4691.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

303.

F r e i e r

G. D. The relaxation

time of

air

in

thunderstorms.— Mon. Weath.

Rev., 1967,

V. 95,

No. 12, p. 843—846.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

304.

F r e i e r

G. Comments

on

“Disintegration

of

Pairs of Drops Raised to

Equal

and

Opposite

Potentials”.— J. Atmos. Sei.,

 

1968, v. 25,

No. 5, p.

936.

 

 

 

304a. F r u m k i n

A.,

O b r u t s c h e w a

A.

 

Über

den

 

Zusammenhang

zwi­

schen den balloelektrischen Erscheinungen und der Potentialdifference an der Tren­ nungsfläche Gas/Lösug.— Kolk Zs., 1931, Bd. 54, Nr. 1, S. 2—7.

 

 

305.

 

G a i v o r o n s k i i

I.

I.,

S e r e g i n

J. A.,

Z a t s e p i n a

 

L.

P.,

Z i ­

m i n

 

В.

I.

Modification

 

experiments

 

on

thunderstorms.— In:

Proc.

Int.

Conf.

Clouds

Phys. Toronto,

1968, p. 815—819.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

306.

 

G i 1 1

E. W. B. Electrification

by

freezing.— Brit. J. Appl. Phys.,

Suppl.,

1953,

No.

2,

p.

16— 19.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

307.

 

G i l l

E.

W. В.,

 

A 1 f г e у

G. E. Production of electric charges

on

water

drops. — Nature,

1952, v.

 

169, No. 4292, p. 203—204.

 

 

 

 

 

 

 

 

 

 

 

the

308.

 

G i l l e s p i e

T.,

L a n g s t r i t h

G. O. An instrument for

 

determining

electric

 

charge

distribution

in

aerosols.— Canadien

 

J.

Chem.,

1952,

v.

30,

No. 12, p. 1056—1068.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

309.

 

G i s h

O.,

W a i t

G. Thunderstorms

and

the

earth’s

general

electrifica­

tion.— J. Geophys. Res., 1950, v. 55, No. 4,

p. 473—474.

 

 

 

 

 

 

 

 

 

 

 

 

310.

 

G i t l i n

S.

 

N.,

 

G o y e r

G.

G.,

H e n d e r s o n

1,

T.

J.

The

liquid

water

content

of

hailstones.— J. Atmos. Sei.,

1968,

v. 25,

No.

p. 97—99.

 

 

 

 

 

 

 

311.

 

G o k h a l e

 

N.

R.,

G o o l d

J.

Droplet

freezing

by

surface

nucleation.—

J. Appl.

Met., 1968, V. 7, No. 5, p. 870—874.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

312.

 

G o r b a t s c h e w

S. W.,

M u

s t e l

 

E.

R. Uber

die

untere

Stabilitäts-

gränze

 

von

 

Tropfen

 

bei

 

ihrem

Zusammenprall.— Kolk

Zs.,

1935, Bd.

73,

Nr. 1,

S.

21—24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

313.

G o t t

J. On

the

electric charge collected by water drops falling through

ionized

 

air

in

a vertical

electric

field.— Proc. Roy.

Soc.,

A,

1933, v.

142,

No. 846,

p. 248—268.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

314.

 

G o t t

J. P. On the electric

charge

collected

by water-drops falling through

a

cloud

 

of

electrically

 

charged

particles

in

a

vertical

 

electric

field.— Proc.

Roy. Soc., A, 1935, v. 151, No. 874, p. 665—684.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Заказ

 

584

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

337



 

315.

G o у е г

G.

G.

Effects

of

lightning

on

hydrometeors.— Nature,

 

1965,

V. 206, No. 4990,

p. 1203— 1209.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

316.

G o y e r

 

G.

G.

M c D o n a l d

J.

E.,

B y e r s

F„

B r a h a m

R.

 

R.

 

Jr .

Effects of electric

fields

on water

droplet coalescence.— J. Met.,

1960,

v. 17,

No. 4,

p. 442—445.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

317.

G o y e r

 

G.

G.,

P l o o s

t e r

M. N. On the role

of

schock

waves

and

adiabatic

cooling

 

in the

nucleating of ice crystals by lightning discharge.— J. At­

mos. Sei., 1968, V. 25,

No. 5, p. 857—862.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nes

318.

G г a у W. M. Calculations

of

cumulus

vertical

draft

velocities

in

hurrica­

from

aircraft

observations.— J.

Appl.

Met.,

1965,

v. 4, No. 4, p. 463—474.

 

319.

G s c h w e n d

P. Beobachtungen über die elektrischen Ladungen ein­

zelner Regentropfen und

Schneeflocken.— Jahrb. Radioakt. Elektron.,

1920,

Bd.

17,

S.

62—79.

 

K.

L.

S.,

H i t s c h f e l d

W.

A

laboratory

investigation

 

of

 

the

 

320.

G u n n

 

 

 

coalescence between

large

and small

water

drops.— J.

Met.,

1951,

v.

8,

 

No.

1,

p. 7— 16.

G u n n

R. The

electrical charge on precipitation at

 

various

altitudes

and

 

321.

 

its

relation to thunderstorms.— Phys.

Rev.,

1947,

v.

71,

No. 3,

p. 181— 186.

Appl.

 

322.

G u n n

R. Electrical field intensity inside of

natural

clouds.— J.

Phys., 1948, V. 19,

No. 5, p. 481—484.

 

 

 

 

 

 

 

 

 

rain

and

its

rela­

tion

323.

G u n n

R. The

free electrical charge on thunderstorm

to droplet size.— J. Geophys. Res., 1949,

v. 54,

No.

1, p. 57—63.

 

 

 

 

 

 

 

324.

G u n n

R. The free electrical charge on precipitation inside an active

thunderstorm .— J. Geophys. Res.,

1950, v. 55, No. 2, p. 171— 178.

 

 

 

 

 

 

 

 

325.

G u n n

R. Diffusion charging of atmospheric droplets by ions, and the

resulting

combination

coefficients.— J. Met.,

 

1954, v. 11, No. 5,

p. 339—347.

 

 

 

 

326.

G u n n

R. Initial electrification process in

thunderstorms.— J. Met.,

1956,

V. 13, No. 1, p. 21—29.

electrification

of precipitation

and

thunderstorms.— Proc.

 

327.

G u n n

R. The

IRE, 1957, V. 45,

No. 10, p. 1331— 1358.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

328.G u n n R. Collision characteristics of freely falling water drops.— Science, 1965, V. 150, No. 3697, p. 695—701.

329.G u n n R., D e v i n C. Raindrop charge and electric field in active thun­ derstorms.— J. Met., 1953, V. 10, No. 4, p. 279—284.

330.

G u n n

R.,

K i n

z e r

G. D. The terminal velocity

of

fall

for water

dro­

plets

in

stagnant air.— J. Met.,

1949, v. 6, No. 4,

p. 243—248.

 

 

 

 

 

 

331.

H a l

l e t

t

J.

On the

structure of

precipitation elements formed by the

freezing

of supercooled

water.— In:

Proc.

Int.

Conf.

Cloud

Phys. Tokyo,

1965,

p. 201—204.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

332.

H a l

z e r

R. E.,

S a x o n D. S. Distribution

of

electrical

conduction

cur­

rents

in

the

vicinity

of

thunderstorms.— J.

 

Geophys.

 

Res.,

1952,

v.

57,

No.

3,

p. 207—216.

 

 

W.

R. The

Volta

effect

as a cause of static electrification.—

333.

H a r p e r

Proc. Roy. Soc., A, 1951, v. 205, No. 1080, p. 83— 103.

 

 

 

 

 

 

 

 

 

 

334.

H a r r i n g t o n

E. L. Observations on the appearance and growth of

tropical

cumuli.— J. Met.,

1958, v. 15, No. 2,

p. 127— 130.

 

 

studies

using

 

radar

335.

H a r t

H.

E.,

C o o p e r

L. W. Thunderstorm

airflow

 

transponders

and

superpressure

 

balloons.— In:

Proc.

13th Radar Met.

Conf.

1968,

p. 196—201.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

336.

H a t a k e y a m a H . The distribution

of

the sudden

change

of

electric

field

on the earth's surface due to lightning discharge.— In: Recent advances in

atmo­

spheric electricity. L., Pergamon

 

Press,

1958, p. 289—298.

 

 

 

 

 

 

 

 

337.

H o b b s

P.

V.,

A l k e z w e e n y

A. J. The fragmentation of freezing

water

droplets in

free

fall.— J. Atmos. Sei.,

1968, v. 25, No. 5, p. 881—888.

 

 

338.

H o b b s

P.

V.,

B u r r o w s

D. A.

The electrification of an ice sphere

moving

through

natural

clouds.— J. Atmos.

Sei., 1966,

 

v. 23,

No. 6,

p. 757—763.

339.

H o c k i n g

L. M. The

collision efficiency of

small

drops.— Quart. J. Roy.

Met. Soc., 1959, v. 85, No. 363,

p. 44—50.

 

 

 

1969,

v. 24, No.

1, p. 2— 18.

340.

H o u g h t o n

D. Acapulco’

68.— Weather,

341.

H u t c h i n s о n

W. C. A. Ice-crystal contact

electrification.— Quart.

J.

Roy. Met. Soc.,

1960, V. 86, No. 369, p. 406—407.

 

 

 

 

 

 

 

 

 

 

 

338