ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.10.2024

Просмотров: 116

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

7.6. Процедуры протокола ТфОп

226 Глава 7_____________________________________

228 Глава 7_______________________________________

7.7. Национальные спецификации протокола ТфОп

230 Глава 7________________________

232 Глава 7 _______

Глава 8

8.1. Протокол назначения несущих каналов

234 Глава 8_______________________________________

236 Глава 8____

238 Глава 8_______________________________________

240 Глава 8 ________ ___

242 Глава 8 ___________

8.2. Протокол управления трактами интерфейса v5.2

244 Глава 8 ___________

246 Глава 8_______________________________________

248 Глава 8______________________________________

250 Глава 8_______________________________________

8.4. Протокол управления

252 Глава 8_______________________________________

254 Глава 8 __________________________________

Глава 9

9.1. Модель взаимодействия открытых систем

258 Глава 9 ___________________________________

260 Глава 9 __________________________________

9.2. Сети с коммутацией пакетов х.25

262 Глава 9___________________________________.

9.3. Архитектурапротоколах.25

264 Глава 9 ________________ _______________

266 Глава 9_______________________________________

9.4. Применения протокола х.25

Глава 10

10.1. Протоколы tcp/ip и модель osi

270 Глава 10______________________________________

10.2. Протокол управления передачей tcp

272 Глава 10____________________________________

274 Глава 10______________________________________

10.3. Протоколы udf и icmp

276 Глава 10______________________________________

10.4. Межсетевой протокол ip

278 Глава 10 ___________________________________

280 Глава 10___________________

282 Глава 10______________________________________

284 Глава 10 ___

10.5. Протоколы нижнего уровня

286 Глава 10______________________________________

10.6. Сетевые услуги в tcp/ip

10.7. Прогнозы по мотивам tcp/ip

258 Глава 9 ___________________________________

пользователи открытых систем, размещенных в разных (и, в общем случае, несмежных) узлах сети.

Уровень 4 (или транспортный уровень) осуществляет «сквоз­ную» (от одного конечного пользователя до другого) оптимизацию использования ресурсов (то есть сетевых услуг) с учетом типа и ха­рактера связи, избавляя своего пользователя от необходимости принимать во внимание какие бы то ни было детали, связанные с переносом информации. Этот уровень всегда оперирует со всей связью в целом, дополняя, если это требуется, функции уровня 3 в части обеспечения нужного конечным пользователям качества ус­луг.

Уровень 5 (или уровень сеанса) обеспечивает координацию («внутри» каждой связи) взаимодействия между прикладными про­цессами. Примеры возможных режимов взаимодействия, которые поддерживаются уровнем 5: дуплексный, полудуплексный или симплексный диалог.

Уровень 6 (или уровень представления) производит преобра­зование из одной формы в другую синтаксиса транспортируемых данных. Это может быть, например, преобразование ASCII в EBCDIC и обратно.

Уровень 7 (или прикладной уровень) содержит функции, свя­занные с природой прикладных процессов и необходимые для удовлетворения тех требований, которые существенны с точки зре­ния взаимодействия прикладных процессов в системах А и В (рис. 9.1), или, говоря иначе, с точки зрения доступа этих процессов к среде OSI. Так как это самый верхний уровень модели OSI, он не име­ет верхней границы.

Таким образом, функции уровней 1—3 обеспечивают транс­портировку информации из одного пункта территории в другой (возможно, более чем через одно звено, то есть с коммутацией) и потому связаны с отдельными элементами сети связи и с ее внут­ренней структурой. Функции уровней 4—7 относятся только к «сквоз­ной» связи между конечными пользователями и определены таким образом, что они не зависят от внутренней структуры сети.

Поскольку в силу тех или иных специфических особенностей разных уровней в них могут формироваться и обрабатываться ин­формационные блоки различных размеров, в большинстве уров­ней предусматриваются, в числе прочих, функции сегментации блоков данных и/или их объединения.

Протокол Х.25 259

Любой функциональный уровень, например, уровень N (или N-уровень), содержит некоторое множество функций, которые вы­полняет соответствующая аппаратно-программная, т.е. физическая, подсистема (ее удобно называть подсистемой ранга N или N-подсистемой). N-подсистема содержит в себе активные элемен­ты, которые реализуют определенные для нее функциональные воз­можности (либо все их множество, либо каждый элемент выполня­ет вполне определенную часть этого множества). В англоязычной литературе такого рода активный элемент принято называть entity, a в литературе на русском языке чаще всего используется термин логический объект.


Итак, логическим объектом уровня N (или логическим N-объ­ектом, или, если из контекста ясно, о чем идет речь, то просто N-объектом) называется множество функций, привлекаемых N-уровнем к обслуживанию конкретной связи между (N+1)-под­системами.

Процесс обмена информацией между двумя физическими сис­темами через сеть можно интерпретировать как процесс взаимодей­ствия двух открытых систем, размещенных в разных географических точках. Взаимодействие это связано с тем, что пользователям той и другой системы нужно обмениваться данными, необходимыми для выполнения тех или иных задач. Обе взаимодействующие системы имеют многоуровневую архитектуру, причем функции любого од­ного и того же уровня в той и другой системе идентичны (или, по меньшей мере, согласованы).

В подобных условиях уместно говорить о том, что на каждой фазе взаимодействия между двумя системами имеет место взаи­модействие между подсистемами одного ранга, размещенными в системе А и в системе В. При этом подсистема ранга (N+1) в сис­теме, которая инициирует данную фазу (например, в системе А), должна завязать диалог с подсистемой того же ранга (N+1) в сис­теме, привлекаемой к участию в данной фазе (например, в систе­ме В). (N+1)-подсистема, размещенная в системе В, должна, в свою очередь, поддержать продолжение диалога. Иными словами, долж­на быть организована информационная связь между подсистема­ми одного ранга, размещенными в разных системах (peer-to-peer communication).

При организации и в процессе такой связи подсистема ранга (N+1), находящаяся в системе А, обращается к услугам подсисте­мы ранга N в той же системе А. Логический (N+l)- объект системы


260 Глава 9 __________________________________

А передает к N-объекту своей системы запрос, конечная цель которого состоит в том, чтобы вызвать ответную реакцию логиче­ского (N+ 1)-объекта системы В. На пути к этой цели N-объект сис­темы А обращается к услугам (N-1)-объекта своей системы, тот, в свою очередь, — к услугам (N-2)-объекта и т.д., вплоть до логическо­го объекта уровня 1, который обеспечивает использование физиче­ской среды для передачи битов, несущих запрос от системы А к сис­теме В. Логический объект уровня 1 системы В, приняв эти биты, формирует соответствующую индикацию для логического объекта уровня 2 своей системы, тот сообщает об этом логическому объекту уровня 3 и т.д. «вверх» до тех пор, пока индикация приема запроса не достигнет логического (N+ 1)-объекта системы В.

Далее, в общем случае, происходит обратный процесс. От­клик логического (N+1)-объекта системы В передается к системе А с привлечением услуг N-объекта, затем — (N-1)-объекта и т.д. в системе В, а прием уровнем 1 системы А битов, которые доставили отклик, интерпретируется логическими объектами системы А как подтверждение системой В приема отправленного к ней запроса. Это подтверждение проходит в системе А уже понятным читателю путем «вверх», пока не достигнет отправившего запрос логическо­го (N+l)-o6beKTa.

Сказанное иллюстрирует рис. 9.2, на котором запрос, индика­ция, отклик и подтверждение фигурируют как имена сервисных примитивов.

Взаимодействие между логическими (N)-объектами двух взаимодействующих открытых систем происходит в соответствии с (М)-протоколом. Информация, обмен которой поддерживает (N)-протокол, оформляется в так называемые протокольные блоки дан­ных (N)-PDU (protocol data units).

Для передачи (N)-PDU логический (N) -объект обращается к услугам расположенного ниже (N-1)-уровня и передает к нему свои PDU в составе сервисных блоков данных (N- 1)-SDU (service data units), используя сервисные (N-1)-примитивы. Логический (N-1)-объект одной системы взаимодействует с логическим (N- 1)-объектом дру­гой системы в соответствии с (N-1) -протоколом, вводя содержимое (N-l)-SDU в протокольные блоки данных (N-l)-PDU, то есть до­полняя каждый (N-l)-SDU управляющей информацией протокола (N-l)-PCI (protocol control information). Далее, для передачи (N-1)-PDU происходит обращение к услугам (N-2)-уровня и т.д.

Сказанное иллюстрирует рис. 9.3.

Протокол Х.25 261


Рис. 9.3. Протокольные и сервисные блоки данных

9.2. Сети с коммутацией пакетов х.25

Х.25 представляет собой комплект протоколов трех нижних уровней модели OSI, разработанный МККТТ для интерфейса ме­жду терминалами пользователей и сетью с коммутацией пакетов. Протоколы Х.25 использовались для создания всемирной сети коммутации

262 Глава 9___________________________________.

пакетов. В этой сети информация пользователей инкапсу­лируется (заключается) в пакеты, содержащие данные об адреса­ции о последовательности пакетов и контроле ошибок, а также све­дения о пользователе или приложении. Пакеты передаются по вир­туальным каналам между терминалом Х.25 конечного пользователя DTE (Data Terminal Equipment) и окончанием канала двусторонней передачи данных DCE (Data Circuit-Terminating Equipment), исполь­зуемого в качестве канала доступа к сети пакетной коммутации.

Первая рекомендация Х.25 была утверждена на 6-й пленар­ной ассамблее МККТТ в 1976 г., а переработанные версии появля­лись в 1980 и 1984 гг. К началу 80-х годов протоколы Х.25 уже ши­роко применялись для передачи данных во всем мире, особенно между удаленными терминалами и центральными системами. Стандарты ISDN, рассмотренные в главах 3, 4 данного тома, раз­рабатывались с учетом поддержки сетей Х.25.

Протокол Х.25 использует неоднократно упоминавшийся в этой книге протокол доступа к звену данных LAPB (Link Access Protocol — Balanced), который был специально разработан для обес­печения надежной передачи данных через звено. Первоначально ориентированный на каналы с низким качеством, протокол LAPB использует принцип, согласно которому каждый узел в сети дол­жен проверять каждый блок данных уровня 2 (кадр), как только он получен, и определять, может ли этот кадр маршрутизироваться к ближайшему узлу или он должен быть передан повторно. Другой принцип, который связан с Х.25, заключается в том, что повтор­ная передача осуществляется к узлу, который детектировал ошиб­ку, из ближайшего к нему узла, принявшего верный кадр. Это оз­начает, что каждый узел должен обеспечивать контроль, что тре­бует затрат на оборудование и вводит задержки в маршрутизацию данных.

Во время появления сетей Х.25 (а они функционируют с конца 60-х годов) такой уровень контроля ошибок был необходим, по­скольку он учитывал характеристики существовавших тогда фи­зических коммуникационных линий. Х.25 хорошо работает в си­туациях, когда не могут быть обеспечены каналы связи с высокой надежностью. В областях, где развернуты оптоволоконные сети, Х.25 вряд ли может считаться подходящим выбором, тем более, при наличии такой технологии, как Frame Relay (ретрансляция кадров).


На рис. 9.4 показан пример взаимодействия сетей Х.25 с ис­пользованием межсетевых шлюзов Х.75 и устройств сборки-разборки

ПротоколХ.25 263

пакетов PAD, которые обеспечивают преобразование различных потоков данных (SNA, асинхронный и т.д.) в протокол Х.25. Факти­чески протокол Х.25 является интерфейсом между абонентом и се­тью, а Х.75 является протоколом для использования между узлами сети коммутации пакетов. Оба протокола аналогичны, но протокол Х.75 предоставляет услуги, которые запрашиваются внутри сети с коммутацией пакетов и не касаются абонентских интерфейсов. Кро­ме того, Х.75 может рассматриваться только как протокол сетевого уровня, в то время как Х.25 поддерживает повторную передачу, сег­ментирование и сборку блоков данных.

Рис. 9.4. Пример объединения сетей с коммутацией пакетов


Смотрите также файлы