Файл: The Embryonic Human Brain An Atlas of Developmental Stages. Third Edition. 2006. By Ronan O\'Rahilly-1.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 22.10.2024

Просмотров: 101

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

328

BIBLIOGRAPHY

O’Rahilly, R., and Muller,¨ F. 1984a Embryonic length and cerebral landmarks in staged human embryos. Anat. Rec., 209:265–271.

O’Rahilly, R., and Muller,¨ F. 1984b The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am. J. Anat., 169:237–257.

O’Rahilly, R., and Muller,¨ F. 1985 The origin of the ectodermal ring in staged human embryos of the first 5 weeks. Acta Anat., 122:145–157.

O’Rahilly, R., and Muller,¨ F. 1986 The meninges in human development.

J. Neuropathol. Exp. Neurol., 45:588–608.

O’Rahilly, R., and Muller,¨ F. 1987a Developmental Stages in Human Embryos Including a Revision of Streeter’s “Horizons” and a Survey of the Carnegie Collection. Carnegie Institution of Washington, Washington, DC, Publication No. 637.

O’Rahilly, R., and Muller,¨ F. 1987b The developmental anatomy and histology of the human central nervous system. In P.J. Vinken, G.W. Bruyin, and H.L. Klawans (eds.), Handbook of Clinical Neurology. Elsevier, Amsterdam.

O’Rahilly, R., and Muller,¨ F. 1988 “Neuroschisis” in human embryos. Teratology, 38:189.

O’Rahilly, R., and Muller,¨ F. 1989a Bidirectional closure of the rostral neuropore in the human embryo. Am. J. Anat., 184:259–268.

O’Rahilly, R., and Muller,¨ F. 1989b Interpretation of some median anomalies as illustrated by cyclopia and symmelia. Teratology, 40:409–421.

O’Rahilly, R., and Muller,¨ F. 1990 Ventricular system and choroid plexuses of the human brain during the embryonic period proper. Am. J. Anat., 189:285–302.

O’Rahilly, R., and Muller,¨ F. 1994 Neurulation in the normal human embryo. In Neural Tube Defects, Ciba Foundation Symposium No. 181. Wiley, Chichester.

O’Rahilly, R., and Muller,¨ F. 1996a The nervous system. In O’Rahilly and Muller¨ (eds.), Human Embryology and Teratology, 2nd ed., WileyLiss, New York, pp. 361–416.

O’Rahilly, R., and Muller,¨ F. 1996b Prenatal development of the brain. In I. Timor-Tritsch A. Monteagudo, and H.L. Cohen (eds.), Ultrasonography of the Prenatal and Neonatal Brain. Appleton & Lange, East Norwalk, CT, pp. 1–10.

O’Rahilly, R., and Muller,¨ F. 1999 Summary of the initial development of the human nervous system. Teratology, 60:39–41.

O’Rahilly, R., and Muller,¨ F. 2000 Prenatal ages and stages: measures and errors. Teratology, 61:382–384.

O’Rahilly, R., and Muller,¨ F. 2001a Human Embryology and Teratology, 3rd ed., Wiley-Liss, New York.

O’Rahilly, R., and Muller,¨ F. 2001b Prenatal development of the brain. In I. Timor-Tritsch, A. Monteagudo, and H.L. Cohen (eds.), Ultrasonography of the Prenatal and Neonatal Brain, 2nd ed. McGraw-Hill, New York, pp. 1–12.

O’Rahilly, R., and Muller,¨ F. 2001c The nervous system. In O’Rahilly and Muller,¨ Human Embryology and Teratology, 3rd ed. Wiley-Liss, New York, pp. 395–453.

O’Rahilly, R., and Muller,¨ F. 2002 The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology, 65:162– 170.

O’Rahilly, R., and Muller,¨ F. 2003 Somities, spinal ganglia, and centra. Enumeration and interrelationships in staged human embroys, and implications for neural tube defects. Cells Tissues Organs, 173:75– 92.

O’Rahilly, R., Muller,¨ F., and Bossy, J. 1986 Atlas des stades du developpement´ des formes exterieures´ de l’encephale´ chez l’embryon humain. Arch. Anat. Histol. Embryol., 69:3–39.

O’Rahilly, R., Muller,¨ F., and Bossy, J. 1990 Atlas des stades du developpement´ de l’encephale´ chez l’embryon humain etudi´e´ par des reconstructions graphiques du plan median´ . Arch. Anat. Histol. Embryol., 72:3–34.

O’Rahilly, R., Muller,¨ F., Hutchins, G.M., and Moore, G.W. 1984 Computer ranking of the sequence of appearance of 100 features of the brain and

related structures in staged human embryos during the first 5 weeks of development. Am. J. Anat., 171:243–257.

O’Rahilly, R., Muller,¨ F., Hutchins. G.M., and Moore, G.W. 1987 Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. Am. J. Anat., 180:69–86.

O’Rahilly, R., Muller,¨ F., Hutchins, G.M., and Moore, G.W. 1988 Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development. Am. J. Anat., 182:295–317.

O’Rahilly, R., Muller,¨ F., and Meyer, D.B. 1980 The human vertebral column at the end of the embryonic period proper: 1. The column as a whole. J. Anat., 131:565–575.

O’Rahilly, R., Muller,¨ F., and Meyer, D.B. 1983 The human vertebral column at the end of the embryonic period proper: 2. The occipitocervical region. J. Anat., 136: 181–195.

O’Rahilly, R., Muller,¨ F., and Meyer, D.B. 1990a The human vertebral column at the end of the embryonic period proper: 3. The thoracicolumbar region. J. Anat., 168:81–93.

O’Rahilly, R., Muller,¨ F., and Meyer, D.B. 1990b The human vertebral column at the end of the embryonic period proper: 4. The sacrococcygeal region. J. Anat., 168:95–111.

O’Rourke, N.A., Sullivan, D.P., Kaznowski, C.E., et al. 1995 Tangential migration of neurons in the developing cerebral cortex. Development, 121:2165–2176.

Orts Llorca, F. 1977 Morfogenesis de los tuberculos mamilares (“Corpora mamillaria”). Arch. Neurobiol. (Madrid), 40:139–164.

Padget, D.H. 1948 The development of the cranial arteries in the human embryo. Contrib. Embryol. Carnegie Inst., 32:205–261.

Padget, D.H. 1957 The development of the cranial venous system in man, from the viewpoint of comparative anatomy. Contrib. Embryol. Carnegie Inst., 36:79–140.

Padget, D.H. 1970 Neuroschisis and human embryonic maldevelopment.

J. Neuropathol. Exp. Neurol., 29:192–216.

Padmanabhan, R. 1990a Electron-mircroscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure: role of the neuroepithelium and choroid plexus. Acta Anat., 137:5–18.

Padmanabhan, R. 1990b Scanning electron-microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure. Acta Anat., 138:97–110.

Pasquier, L., Dubourg, C., Blayau, M., et al. 2000 A new mutation in the six-domain of SIX3 gene causes holoprosencephaly. Eur. J. Hum. Genet., 8:797–800.

Pearson, A.A. 1941 The development of the nervus terminalis in man. J. Comp. Neurol., 75:39–66.

Pearson, A.A. 1946 The development of the motor nuclei of the facial nerve in man. J. Comp. Neurol., 85:461–476.

Peter, K., Wetzel, G., and Heiderich, F. 1938 Handbuch der Anatomie des Kindes. Bergmann, Munich.

Puelles, L., and Verney, C. 1998 Early neuromeric distribution of tyrosine- hydroxylase-immunoreactive neurons in human embryos. J. Comp. Neurol., 394:283–308.

Quesenberry, P.J., Dooner, G., Dooner, M., and Abedi M. 2005 Ignoratio elenchi: Red herrings in stem cell research. Science, 308:1121– 1122.

Rabinowicz, T. 1986 The differentiated maturation of the cerebral cortex. In F. Falkner and J.M. Tanner (eds.), Human Growth, 2nd ed. Plenum, New York, pp. 385–410.

Rager, G. 1972 Die Entstehung der Insel (Insula Reilii) beim menschlichen Embryo. Z. Morphol. Anthropol., 64:245–278.

Raimondi, A.J., Sato, K., and Shimoji, T. 1984 The Dandy–Walker Syndrome. Karger, Basel.

Rakic, P. 1965 Mesocoelic recess in the human brain. Neurology, 15:708– 715.


BIBLIOGRAPHY

329

Rakic, P. 1974 Embryonic development of the pulvinar-LP complex in man. In I.S. Cooper, M. Riklan, and P. Rakic (eds.), The Pulvinar-LP Complex. Thomas, Springfield, IL, pp. 3–35.

Rakic, P. 1977 Prenatal development of the visual system in the rhesus monkey. Phil. Trans. Roy. Soc. Lond. B, 278:245–260.

Rakic, P. 1984 Organizing principles for development of primate cerebral cortex. In S.C. Sharma (ed.), Organizing Principles of Neural Development. Plenum, New York, pp. 21–48.

Rakic, P. 1991 Development of the Primate cerebral cortex. In M. Lewis (ed.), Child and Adolescent Psychiatry. Williams & Wilkins, Baltimore, pp. 11–28.

Rakic, P., and Sidman, R.L. 1969 Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwick., 129:53–82.

Rakic, P., and Sidman, R.L. 1970 Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J. Comp. Neurol., 139:473–500.

Rakic, P., and Yakovlev, P.I. 1968 Development of the corpus callosum and cavum septi in man. J. Comp. Neurol., 132:45–72.

Rao, M.S. 1999 Multipotent and restricted precursors in the central nervous system. Anat. Rec., 257:137–148.

Ren, T., Anderson, A., Shen, W.-B., et al. 2006 Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat. Rec., 288A:191–204.

Retzius, G. 1896 Das Menschenhirn. Studien in der makroskopischen Morphologie, 2 volumes. Norstedt, Stockholm.

Rhodes, R.H. 1979 A light microscopic study of the developing human neural retina. Am. J. Anat. 154:195–209.

Richter, E. 1965 Die Entwicklung des Globus pallidus und des Corpus subthalamicum. Monogr. Gesamtgeb. Neurol. Psychiat, (Berlin), 108:1– 132.

Rioch, D.M., Wislocki, G.B., O’Leary, J.L. 1940 A precis´ of preoptic, hypothalamic and hypophysial terminology with atlas. Res. Tubl. Ass. Nerv. Ment. Dis., 20:3–30.

Robinson, R.J., and Tizard, J.P.M. 1965 The central nervous system in the new-born. Br. Med. Bull., 22:49–55.

Roessler, E., Belloni, E., Gaudenz K., et al. 1996 Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet., 14:357– 360.

Ruano Gil, D. 1965 Grave malformacion encefalica (encefalosquisis) en un embrion humano da 10.25 mm con un humano gemelo normal.

An. Desarrollo, 13:149–160.

Sabin, F.R. 1900 A model of the medulla oblongata, pons and midbrain of a newborn babe. Johns Hopkins Hosp. Rep., 9:925–1023.

Sabin, F.R. 1901 An Atlas of the Medulla and Midbrain. Friedenwald, Baltimore.

Sabin, F.R. 1902 A note concerning the model of the medulla, pons and midbrain of a new-born babe as reproduced by F. Ziegler. Anat. Anz., 22:281–289.

Schachenmayr, W., and Friede, R.I. 1978 The origin of subdural neomembranes: I. Fine structure of the dura-arachnoid interface in man. Am. J. Pathol., 92:53–68.

Schell, U., Wienberg, J., Kohler, A., et al. 1996 Molecular characterization of breakpoints in patients with holoprosencephaly and definition of the HPE2 critical region 2p21. Hum. Mol. Genet., 5:223–229.

Schwanzel-Fukuda, M., Crossin, K.L., Pfaff, D.W., et al. 1996 Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J. Comp. Neurol., 366:547–557.

Sensenig, E.C. 1951 The early development of the meninges of the spinal cord in human embryos. Contrib. Embryol. Carnegie Inst., 34:45–157.

Sharp, J.A. 1959 The junctional region of cerebral hemisphere and third ventricle in mammalian embryos. J. Anat., 93:159–168.

Shaw, Ch.-M., and Alvord, E.C. 1969 Cava septi pellucidi et Vergae: Their normal and pathological states. Brain, 92:213–224.

Shiota, K. 1991 Development and intrauterine fate of normal and abnormal human conceptuses. Congenital Anomalies, 31:67–80.

Shu, T., and Richards L.J. 2001 Cortical axon guidance by the glial wedge during the development of the corpus callosum. J. Neurosci., 21:2749–2756.

Shuangshoti, S., and Netsky, M.G. 1966 Histogenesis of choroid plexus in man. Am. J. Anat., 118:283–315.

Sidman, R. L., and Rakic, P. 1973 Neuronal migration, with special reference to developing human brain: a review. Brain Res., 62:1–35.

Sidman, R.L., and Rakic, P. 1982 Development of the human central nervous system. In W. Haymaker and R.E. Adams (eds.), Histology and Histopathology of the Nervous System. Thomas, Springfield, IL, pp. 3–145.

Siebert, J.R., Cohen, M.M., Sulik, K.K., Shaw, C.-M., and Lemire, R.J. 1990

Holoprosencephaly. An Overview and Atlas of Cases. Wiley-Liss, New York.

Smith, T.E., Siegel, M.K., and Bhatnagar, K.P. 2001 Reappraisal of the vomeronasal system of catarrhine primates: ontogeny, morphology, functionality, and persisting questions. Anat. Rec., 265:176–192.

Smith, T.D., Siegel, M.I., Mooney, M.P., et al. 1997 Prenatal growth of the human vomeronasal organ. Anat. Rec., 248:447–455.

Smith, T.E., Bhatnagar, K.P., and Shimp, K.L. 2002 Histological definition of the vomeronasal organ in humans and chimpanzees, with a comparison to other primates. Anat. Rec., 267:166–176.

Song, D-L, Chalepakis, G., Gruss, P., and Joyner, A.L. 1996 Two Paxbinding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development, 122:627–635.

Sternberg, H. 1929 Über Spaltbildungen des Medullarrohres bei jungen menschlichen Embryonen, ein Beitrag zur Entstehung der Anencephalie und der Rachischisis. Virchows Arch., 272:325–375.

Streeter, G.L. 1912 The development of the nervous system. In F. Keibel and F.P. Mall (eds.), Manual of Human Embryology, Vol. 2. Lippincott, Philadelphia, pp. 1–156.

Streeter, G.L. 1915 The development of the venous sinuses of the dura mater in the human embryo. Am. J. Anat., 18:145–178.

Streeter, G.L. 1918 The developmental alterations in the vascular system of the brain of the human embryo. Contrib. Embryol. Carnegie Inst., 8:5–38.

Streeter, G.L. 1919 Factors involved in the formation of the filum terminale. Am. J. Anat., 25:1–11.

Streeter, G.L. 1927 Archetypes and symbolism. Science, 65:405–412. Sun, T., Patoine, Ch., Abu-Khalil, A., et al. 2005 Early asymmetry of gene

transcription in embryonic human left and right cerebral cortex. Science, 308:1794–1798.

Tanimura, T., Nelson, T., Hollingworth, R.R., and Shepard, T.H. 1971 Weight standards for organs from early fetuses. Anat. Rec., 171:227– 236.

Tiedemann, F. 1816 Anatomie und Bildungsgeschichte des Gehirns im Foetus des Menschen. Steinische Buchhandlung, Nurnberg¨ .

Tiedemann, F. 1823 Anatomie du cerveau, contenant l’histoire de son developpement´ dans le foetus. Bailliere,` Paris.

Timor-Tritsch, I., Monteagudo, A., and Cohen, H.L. 2001 Ultrasonography of the Prenatal and Neonatal Brain, 2nd ed. McGraw-Hill, New York.

Tobenas-Dujardin, A.C., Duparc, F., Ali, N., et al. 2005. Embryology of the internal carotid artery dural crossing. Surg. Radiol. Anat., 27:495– 501.

Tole S., and Patterson, P.H. 1995 Regionalization of the developing forebrain: A comparison of FORSE-1, Dlx-2, and BF-1. J. Neurosci., 15:970–980.

Toledano, A. 1992 Evolution of cholinergic cortical innervation after nbM lesioning (an experimental Alzheimer model). In I. Kostovic,´ S. Knezeviˇ c,´ H.M. Wisniewski, and G.J. Spilich (eds.), Neurodevelopment, Aging and Cognition. Birkhauser,¨ Basel.

Tsuru, A., Mizuguchi, M. Uyemura, K., and Takashima, S. 1996 Immunohistochemical expression of cell adhesion molecule L1 during development of the human brain. Early Hum. Dev., 45:93–101.


330

BIBLIOGRAPHY

Turkewitsch, N. 1933 Die Entwicklung der Zirbeldruse¨ beim Menschen.

Morphol. Jahrb., 72:379–345.

Turkewitsch, N. 1935 Die Entwicklung des Aquaeductus cerebri des Menschen. Morphol. Jahrb., 76:421–447.

Ulfig, N., Neudorfer,¨ F., and Bohl, J. 1999 Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation. J. Anat., 195:87–100.

Ulfig, N., Setzer, M., Neurdorfer,¨ F., and Sarethki, U. 2000 Changing distribution patterns of synaptophysin-immunoreactive structures in the human dorsal striatum of the fetal brain. Anat. Rec., 258:198–209.

Ulfig, N., Neudorfer,¨ F., and Bohl, J. 2001a Development-related expressions of AKAP79 in the striatal compartments of the human brain.

Cells Tissues Organs, 168:319–329.

Ulfig, N., Neudorfer,¨ F., Feldhaus, C., et al. 2001b Neue Perspektiven zur entwicklungsgeschichtlichen Bedeutung des humanen Ganglienhugels¨ . Verh. Anat. Ges., 96:99.

Ulfig, N., Vuksic, M., and Bohl, J. 2002 The subplate of the human fetal brain displays changing patterns of synaptotagmin and synaptoporin expression. Verh. Anat. Ges., 97:286–287.

Velasco-Villamar, I. 1967 Sobre la organizacion´ del allocortex diagonalis.

An. Anat. (Zaragoza), 16:109–179.

Verney, C. 2003 Phenotypic expression of monoamines and GAGA in the early development of human telencephalon, transient or not transient.

J. Chem. Neuroanat., 26:283–292.

Verney, C., and Derer, P. 1995 Cajal-Retzius neurons in human cerebral cortex at midgestation show immunoreactivity for neurofilament and calciumbinding proteins. J. Comp. Neurol., 359:144–153.

Verney, C., Zecevic, N., Nikolic, B., et al. 1991 Early evidence of catecholaminergic cell groups in 5- and 6-week-old human embryos using tyrosine hydroxylase and dopamine-β-hydroxylase immunocytochemistry. Neurosci. Lett., 131:121–124.

Verney, C., Milosevic, A., Alvarez, C., and Berger, B. 1993 Immunocytochemical evidence of well-developed dopaminergic and noradrenergic innervations in the frontal cerebral cortex of human fetuses at midgestation. J. Comp. Neurol., 336:331–344.

Verney, C., Amaroui, A.E., and Zecevic, N. 1996 Comigration of tyrosine hydroxylaseand gonadotropin-releasing hormone-immunoreactive neurons in the nasal area of human embryos. Dev. Brain Res., 97:251– 259.

Verney, C., Zecevic, N., and Puelles, L. 2001a Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos. J. Comp. Neurol., 429:22–44.

Verney, C., Zecevic, N., and Ezan, P. 2001b Expression of calbindin D28K in the dopaminergic mesotelencephalic system in embryonic and fetal human brain. J. Comp. Neurol., 429:45–58.

Verney, C., Lebrand, C., and Gaspar, P. 2002 Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat. Rec., 267:87–93.

Vernier, P., Moret, F., Callier, S., et al. 2004 The degeneration of dopamine neurons in Parkinson’s disease. Ann. N.Y. Acad. Sci., 1035:231– 249.

de Vries, D.J.I.P. 1992 The first trimester. In J.G. Nijhuis (ed.), Fetal Behaviour. Oxford University Press, Oxford, pp. 19–50.

Westergaard, E. 1971 The lateral cerebral ventricles of human foetuses with a crown–rump length of 26–178 mm. Acta Anat., 79:409–421.

Wilson, J.T. 1937 On the nature and mode of origin of the foramen of Magendie. J. Anat., 71:423–436.

Windle, W.F. 1970 Development of neural elements in human embryos of four to seven weeks gestation. Exp. Neurol. (Suppl. 5), 28:44–83.

Wozniak,´ W., and O’Rahilly, R. 1980 The times of appearance and the developmental sequence of the cranial parasympathetic ganglia in staged human embryos. Anat. Rec., 196:255A–256A.

Wozniak,´ W., and O’Rahilly, R. 1982 An electron microscopic study of myelination of pyramidal fibres at the level of the pyramidal decussation in the human fetus. J. Hirnforsch., 23:331–342.

Yamada, S., Uwabe, Ch., Fujii, S., and Shiota, K. 2004 Phenotypic variability in human embryonic holoprosencephaly in the Kyoto Collection.

Birth Defects Res. A., 70:495–508.

Yamadori, T. 1965 Die Entwicklung der Thalamuskerne mit ihren ersten Fasersystemen bei menschlichen Embryonen. J. Hirnforsch., 7:393– 413.

Yo, T., Fukatsu, J., Ishikawa, T., et al. 1957 On the forebrain angle in the brain of human fetus. Hirosaki Med. J., 8:234–238.

Yoshida, M., Suda, Y., Matsuo, I., et al. 1997 Emxl and Emx2 functions in development of dorsal telencephalon. Development 124:101–111.

Zecevic, N., and Milosevic, A. 1997 Initial development of γ -aminobutyric acid immunoreactivity in the human cerebral cortex. J. Comp. Neurol., 380:495–506.

Zecevic, N., and Rakic, P. 1976 Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man. J. Comp. Neurol., 167:27–48.

Zecevic, N., and Verney, C. 1995 Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J. Comp. Neurol., 351:509– 535.

Zecevic, N., Milosevic, A., Rakic, S., and Marin-Padilla, M. 1999 Early development and composition of the human primordial plexiform layer: an immunohistochemical study. J. Comp. Neurol., 412:241– 254.


GLOSSARY

The terms are listed by their key nouns, e.g., Rhombic lip under Lip, rhombic.

Amygdala: See Nuclei, amygdaloid.

Apoptosis: A process of controlled cell elimination, e.g., many if not most postmitotic, postmigratory, welldifferentiated neurons are eliminated during the formation of synapses. Defects in apoptosis may underlie various neurodegenerative disorders.

Archipallium: The cerebral cortex of the hippocampal formation. It is separated from the neopallium by the peri-archicortex (presubiculum), and it becomes distinguishable at stage 21 (Fig. 21-17).

Area dentata: The zone between the hippocampus sensu stricto and the area epithelialis. It develops into the dentate gyrus and, during the embryonic period, is characterized by having only a ventricular layer (Fig. 21-4).

Area epithelialis: The field between the area dentata and the lamina terminalis (Figs. 21-4 and 21-17). It consists of one to two, and later more, rows of cells, which, as development proceeds, contain dark inclusions. In the fetal period, a part of it becomes the lamina affixa.

Area hippocampi: This is characterized at first by an early appearing telencephalic marginal layer, and this is the only part of the telencephalon that possesses a marginal layer (Fig. 16-11). A ventricular thickening forms in the dorsomedial wall of the cerebral hemisphere (Fig. 15-4). It is C-shaped already at stage 18.

Area reuniens: A term used by His for the junctional region of the prosencephalon, the hypophysial primordium, the tip of the notochord, the roof of the foregut, and the oropharyngeal membrane.

Areae membranaceae: Two very thin areas of endothelioid cells in the roof of the fourth ventricle (Fig. 17-5). The epithelium is thinnest at 6 weeks, whereas at the end of the embryonic period, the thin cells become replaced by cuboidal cells. The area membranacea rostralis is adjacent to the cerebellar primordium. The area membranacea caudalis corresponds to the central bulge of

Brocklehurst (1969) and to the saccular ventricular diverticulum of Wilson (1937), and is believed to be the site of the future median aperture of the fourth ventricle.

Bundles, forebrain: See Fasciculi, prosencephalic.

Canal, neurenteric: A more or less vertical passage (perpendicular to the embryonic disc) that appears during stage 8 as a result of increasing breakdown of the floor of the notochordal canal (q.v.). Both canals commence in common, dorsally in the primitive pit, and the neurenteric canal may be regarded as the remains of the notochordal canal at the level of the primitive node. The neurenteric canal connects the amniotic cavity (at the primitive pit) with that of the umbilical vesicle (or so-called yolk sac) (Fig. 9-3E). The canal in stages 8 and 9 and its site in stages 10 to 12 are important landmarks in development and teratogenesis (Muller¨ and O’Rahilly, 2004a).

Canal, notochordal: An oblique passage that appears in the notochordal process during stage 8 (Fig. 8-2).

Catecholamine cell groups (Tables 17-3 and 26-2): dopaminergic, noradrenergic, and adrenergic neurons (Zecevic and Verney, 1995). Monoamines have most probably also a trophic function (Verney et al., 2002).

Cells, Cajal-Retzius: Among the early-formed neurons (Fig. 17-19) as revealed by reeler-immunoreactivity (Zecevic et al., 1999). They are tangentially arranged bipolar neurons within the primordial plexiform layer. Those in the future molecular layer mature late in trimester 2 (Verney and Derer, 1995) and are most evident near the middle of prenatal life (Tsuru et al., 1996). Reelin produced by the Cajal-Retzius cells is responsible for the normal migration of the neurons from the ventricular layer to the periphery of the wall of the brain. Once the cortical plate develops, the Cajal-Retzius cells are external to (“above”) it. The

The Embryonic Human Brain: An Atlas of Developmental Stages, Third Edition. By O’Rahilly and Muller¨ Copyright C 2006 John Wiley & Sons, Inc.

331


332

GLOSSARY

fetal Cajal-Retzius cells are transformed embryonic C-R cells and have triangular, inverted pyramidal, or fusiform cells bodies from which two or more long horizontal dendrites emerge.

A distinction has been made between Cajal and Retzius cells (Meyer et al., 1999a): the former lie closer to the pia, are smaller, and are frequently triangular or piriform, and they appear when the Retzius cells have already largely disappeared.

The thick horizontal fiber extends throughout the surface of the cerebral cortex for a considerable distance and establishes contacts with the apical dendrites of all pyramidal neurons, regardless of their location (layers 6, 5, 4, 3, 2) or different functional role. The transfer of neuronal information from the Cajal– Retzius cells to all pyramidal neurons may be necessary for all of the latter to acquire and to maintain their funtional activity (Mar´ın-Padilla, 1988a). Here, as in other regions, the use of immunological neuronal markers would enable such cells to become identifiable at earlier stages, as is being found already in other species.

Cells, stem: See Stem cells, neural.

Cerebellum: This part of the hindbrain is derived mostly from the entire alar laminae of rhombomere 1 but partly from the isthmus rhombencephali. The sources of cellular production are mainly the rhombic lip of rhombomere 1 and the ventricular layer of the alar laminae (Fig. 18-18). The cerebellar primordium, distinguishable at stage 13 (Fig. 13-2), becomes the cerebellar plate (q.v.) at about stage 18 (Fig. 18-1), by which time cerebellar swellings (q.v.) have appeared. The cerebellar hemispheres develop early in the fetal period, and the vermis is formed from the median portion of the hemispheres. See also Swellings, cerebellar.

Cerebrum: From Latin, meaning brain. In ancient usage the larger convoluted mass as distinct from the smaller (the cerebellum). At the time of His it included the mesencephalon (cf. cerebral peduncles), but became restricted to the prosencephalon, or to the telencephalon, or to the cerebral hemispheres. Hence the term has practically no scientific value, in contrast to the almost indispensable adjective (e.g., the middle cerebral artery).

Commissures of brain: In this book the term “commissure” is used as soon as fibers cross the median plane, although fibers growing medially are present long before they cross. Examples are the anterior and posterior commissures, and the corpus callosum. See also Decussation.

Cord, hypoglossal cell: A dense cellular prolongation formed by the dermatomyotomic material of at least

the rostralmost three occipital somites caudal to the rostral cardinal vein. The dermatomic cells cannot be distinguished from the myotomic cells, nor can possible contributions from neural crest and epipharyngeal material of the vagus nerve be excluded. The relocation of the cells in the tongue is achieved before the arrival of the hypoglossal nerve. (O’Rahilly and Muller,¨ 1984b). The hypoglossal cord forms (at least some of) the muscles of the tongue. A reconstruction of the hypoglossal cell cord at stage 12 (Muller¨ and O’Rahilly, 1987, Fig. 6B) is in agreement with experimental findings in the rat, in which, at a similar stage, neural crest and dermatomyotomic cells of the occipital somites migrate within and dorsal to pharyngeal arches 3 and 4.

Cord, neural: The neural tissue in the caudal eminence of embryos with a closed caudal neuropore. It becomes canalized secondarily. The development of spinal cord (at stages 12 to about 17–20) from this solid material is termed secondary neurulation (Fig. 12-13).

Cord, spinal: Embryologically, the part of the neural tube caudal to the last (the hypoglossal) rhombomere (Rh.D).

Corpus striatum (Fig. 19-6): The lentiform and caudate nuclei, which become connected by alternating striae of white and gray matter (hence the name). The putamen and the caudate nucleus are telencephalic and arise from the lateral ventricular eminence (experimental evidence exists in the rat), whereas the globus pallidus (externus and internus) is diencephalic and arises from the subthalamus.

Crest, neural: Cells that appear at the neurosomatic junction (i.e., between neural ectoderm and somatic ectoderm) and are probably almost exclusively derived from the neural ectoderm. Most of the crest cells of the brain leave the neural folds before closure of the neural tube (Figs. 10-5 to 7). They participate in the formation of the cranial ganglia (Fig. 11-2). The spinal ganglia appear as cellular condensations of neural crest only at stage 13 (Fig. 13-8B-C). The migration of neural crest cells depends on the extracellular matrix through which they travel. Migratory neural crest cells possess stem cell-like properties.

Decussation: An intersection, the two lines of the letter X, as in the optic chiasma. Further examples are the pyramidal decussation (Fig. 23-32), the decussation of the superior colliculi (e.g., of the tectobulbar fibers, Fig. 15-5), and that of the fibers of the trochlear nerves (Fig. 19-15). See also Commissures.

Dopaminergic centers: Early accumulations of dopaminergic cells that form the interpeduncular nucleus, the ventral tegmental area, the substantia nigra, and the amygdaloid complex (Fig. 17-13).