Файл: Литература Филиппов П. П. Как внешние сигналы передаются внутрь клетки.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.02.2024

Просмотров: 103

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Виды железобетонных конструкций и область их применения железобетона

Достоинства и недостатки железобетона.

Структура (строение) бетона

Усадка бетона и начальные напряжения

Прочность бетона

Деформативность бетона

Модуль деформаций бетона

Виды арматуры

Физико-механические свойства арматурных сталей

Сварные арматурные изделия

Соединения арматуры

Значение трещиностойкости

Сцепление арматуры с бетоном

Анкеровка арматуры в бетоне

Усадка бетона при наличии арматуры

Ползучесть бетона при наличии арматуры

Защитный слой бетона и минимальные расстояния между стержнями

ЛЕКЦИЯ 5. 1. Методы расчёта железобетонных конструкций

Две группы предельных состояний

Сущность метода расчета конструкций по предельным состояниям

Степень ответственности зданий и сооружений

ЛЕКЦИЯ 6. 1. Три стадии напряжённо-деформированного состояния железобетонных элементов

Основы конструирования изгибаемых элементов

ЛЕКЦИЯ 7

РАСЧЕТ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ НА ПОЧНОСТЬ ПО СЕЧЕНИЯМ НОРМАЛЬНЫМ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

Общие сведения. При расчёте прочности железобетонных конструкций выделяют два типа задач:

С полкой в сжатой зоне

Разрушение от действия изгибающего момента

Разрушение бетонной полосы между наклонными трещинами

Сечениями на действие изгибающих моментов

Поперечной арматуры


ОБЩИЕ СВЕДЕНИЯ О ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ.

ЛЕКЦИЯ 1.

ННГАСУ

ОСНОВЫ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

И.В. МОЛЕВ

Литература

  1. Филиппов П.П. «Как внешние сигналы передаются внутрь клетки». Соросовский образовательный журнал, № 3, 1998, с 28-34.

(КОНСПЕКТ ЛЕКЦИЙ ДЛЯ СТУДЕНТОВ НАПРАВЛЕНИЯ «АРХИТЕКТУРА»

Содержание

Лекция 1. Общие сведения о железобетонных конструкциях 3

Лекция 2. Основные физико-механические свойства бетона 13

Лекция 3. Арматура для железобетонных конструкций 26

Лекция 4. Основные свойства железобетона 36

Лекция 5. Метод расчета железобетонных конструкций по

предельным состояниям 48

Лекция 6. Расчет и конструирование изгибаемых элементов

по первой группе предельных состояний 57

Лекция 7. Расчет изгибаемых элементов на прочность по

сечениям нормальным к продольной оси элемента 66

Лекция 8. Расчет изгибаемых элементов таврового сечения

с одиночной арматурой 71

Лекция 9. Расчет изгибаемых элементов на прочность по

сечениям наклонным к продольной оси элемента 77

Лекция 10. Расчет и конструирование сжатых элементов 85

Лекция 11. Расчет внецентренно сжатых элементов 91

Лекция 12. Расчет растянутых элементов 98

1. Определение и сущность железобетона.

2. Достоинства и недостатки железобетонных конструкций

3. Виды железобетонных конструкций и область их применения.

4. Краткие исторические сведения о возникновении и развитии железобетона.

Железобетоном называется строительный материал, в котором рационально соединены в монолитное целое бетон и стальная арматура, совместно до разрушения воспринимающие различные силовые воздействия. Возможно и такое определение: железобетоном называется совокупность бетона и арматурных изделий (сеток, каркасов, отдельных стержней и т.д.), уложенных в теле бетона в соответствии со статической работой конструкции.


Бетон, являясь искусственным камнем и, обладая высокой прочно­стью на сжатие, в 10...20 раз хуже сопротивляется растяжению, что практически не позволяет использовать его как конструктивный ма­териал для растянутых и изгибаемых элементов несущих конструк­ций.

Стальные стержни, имеющиеся в железобетонных конструкци­ях и которые в дальнейшем мы будем называть арматурой, одинаково хорошо сопротивляются как растяжению, так и сжатию.

Идея создания железобетона из двух различных по своим механическим характеристикам материалов заключается в реальной возможности использовать бетон преимущественно в работе на сжатие, а арматуру — в работе на растяжение. Такое сочетание материалов целесообразно, так как сталь­ные стержни, поставленные в растянутой зоне элемента, прекрасно восполняют основной недостаток бетона как конструктивного стро­ительного материала.

Под железобетонными конструкциями будем понимать несущие элементы зданий и сооружений, изготавливаемые из железобетона, и сочетания этих элементов.

Идею железобетона можно достаточно хорошо проиллюстрировать следующим примером (рис. 1.1).

Бетонная балка (без арматуры), лежащая на двух опорах и под­верженная поперечному изгибу, испытывает растяжение продоль­ных волокон в зоне, находящейся ниже нейтрального слоя (рис. 1.1а). Такая балка обладает малой несущей способностью вследствие сла­бого сопротивления бетона растяжению. Она разрушается внезапно (хрупко) при возникновении первой же трещины в бетоне растяну­той зоны. Прочность бетона на сжатие в момент, предшествующий разрушению, в бетонной балке сильно недоиспользуется (напряже­ния в нормальных сечениях в сжатой зоне в этот момент едва до­стигают 5... 10% от прочности бетона на сжатие).



Рисунок 1.1 – Схемы разрушения балок: а – бетонная балка; б – железобетонная балка; 1 – нейтральная ось; 2 – трещина; 3 – сжатая зона4; 4 – растянутая зона; 5 – стальные стержни (арматура).


Такая же балка (рис. 1.1б), снабженная небольшим по площади количеством продольной арматуры по сравнению с площадью по­перечного сечения балки, размещенной в растянутой зоне, может иметь несущую способность до 20 раз превосходящую несущую спо­собность бетонной балки. Характер разрушения балки при не слишком большом насыщении её сечений арматурой плавный, постепен­ный (пластичный). В такой конструкции может быть полностью ис­пользована прочность бетона в работе на сжатие, а арматуры — на растяжение.

Арматуру, имеющую весьма высокое сопротивление сжатию, можно также использовать и для усиления бетона сжатой зоны.

Арматура может быть не только в виде стальных стержней. В качестве арматуры иногда используют нити, канаты, пряди и др. из стекловолокна и даже деревянные или бамбуковые рейки. Однако наиболее широко сейчас применяется стальная арматура.

Основой совместной работы бетона и арматуры (т. е. одинаковые деформации их смежных волокон) в железобетоне является выгод­ное природное сочетание некоторых важных физико-механических свойств этих материалов, а именно:

1. при твердении бетона между ним и поверхностью стальной арматуры возникают значительные силы сцепления (склеивания), вследствие чего в железобетонных элементах под нагрузкой оба материала де­формируются совместно;

2. плотный бетон (с достаточным содержанием цемента от 200...250 до 300...400 кг/м3 и более) надёжно защищает заключённую в нём стальную арматуру от коррозии, а также предохраняет её от непосредственного
воздействия огня и от механических по­вреждений;

3. сталь и бетон обладают близкими по величине коэффициентами температурного (линейного) расширения, поэтому при измене­нии температуры в пределах до 100°С (от -50°С до +50°С) в обоих материалах возникают несущественные начальные (внут­ренние) напряжения и скольжения арматуры в бетоне не наблю­дается; α st = 0,000012°С-1; α bt = 0,00001° С-1.

Виды железобетонных конструкций и область их применения железобетона

Достоинства и недостатки железобетона.


К основным достоинствам железобетона, обеспечивающим ему широкое примене­ние в строительстве, относятся:

- огнестойкость,

- долговечность,

- вы­сокая механическая прочность при сжатии,

- хорошая сопротивля­емость сейсмическим и другим динамическим воздействиям,

- воз­можность возводить конструкции любой формы,

- малые эксплуата­ционные расходы на содержание зданий и сооружений (по сравне­нию с металлическими и деревянными конструкциями),

- хорошая сопротивляемость атмосферным воздействиям,

- высокая гигиенич­ность, способность задерживать радиоактивные излучения,

- почти повсеместное наличие крупных и мелких заполнителей, в больших количествах идущих на приготовление бетона.

Все эти факторы делают железобетон доступным к применению практически на всей территории стра­ны. Затраты электроэнергии на производство железобетонных кон­струкций значительно ниже по сравнению со стальными и ка­менными.

Недостатки железобетона:

- большая плотность (большой собственный вес),

- высокая звуко- и теплопроводность,

- трудоёмкость переделок и усилений,

- необходи­мость выдержки конструкции в опалубке до приобретения бетоном тре­буемой прочности,

- появление трещин вследствие усадки и силовых воздействий.

Многие из этих недостатков могут быть полностью или частично устранены путём применения бетонов на пористых запол­нителях, специальной обработки (пропаривания, вакуумирования и т. п.), предварительного напряжения.

При общей оценке железобетона как строительного материала следует иметь ввиду, что отмеченные выше недостатки малозначи­тельны по сравнению с его достоинствами. Это привело к тому, что за исторически короткий промежуток времени (примерно 150 лет) железобетон занял доминирующее положение в строительстве.

Для современного ка­питального строительства железобетон является строительным ма­териалом № 1. В зависимости от способов возведения различают железобетонные конструкции:


- сборные, изготовляемые преимущественно на заводах стройиндустрии и затем монтируемые на строительных площадках;

- монолитные, полностью возводимые на месте строительства;

- сборно–монолитные, в которых рационально сочетается использование сборных железобетонных элементов заводского изготовления и монолитных частей конструкций.

Железобетонные конструкции различают по виду арматуры:

- с гибкой арматурой (без предварительного напряжения и с предварительным напряжением);

- с жесткой (несущей) арматурой.

Железобетон применяют в самых разнообразных отраслях строительства, находя в каждой из них свои подходящие области применения. Железобетон применяют:

- при возведении жилых домов, общественных зданий различного назначения, сельскохозяйствен­ных построек;

- при строительстве зданий и сооружений промышленного, гражданского и транспорт­ного назначения;

- в гидротехни­ческом строительстве (плотины, дамбы, гидроэлектростанции) и энергетическом строительстве (для возведения главных корпусов тепловых и атом­ных электростанций, атомных реакторов);

- при возведении различных инженерных сооружений (дымовые тру­бы, телевизионные и водонапорные башни, резервуары и. т. д.).

- в транспортном строительстве (для возведения мостов, водопропускных труб, путепрово­дов, метрополитенов, тоннелей на железных и автомобильных доро­гах, подпорных стенок, для покрытия дорог и аэродромов, железобетонные шпалы, желе­зобетонные опоры контактной сети);

- в горной промышленности для надшахтных сооружений и крепления подземных выработок;

- нередко в судо­строении (например, из железобетона изготовляют корпуса барж) и машиностроении (для изготовления станин и опорных частей тя­жёлых станков и прессов).

В последние десятилетия железобетон стали использовать при взведении платформ для добычи нефти со дна морей в зоне шельфа и для устройства саркофагов и скафандров для захоронения радио­активных отходов и хранения радиоактивных материалов.

Прогнозы показывают, что в нынешнем столетии железобе­тон останется основным строительным материалом для несущих и ограждающих конструкций зданий и сооружений различного назна­чения.

Краткие исторические сведения о возникновении и раз­витии железобетона.