Файл: Лабораторная работа 1 по теме Методы решения нелинейных уравнений.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 39
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
составить системы нормальных уравнений:
для линейной функции P1(x) = А0+А1*x система нормальных уравнений примет вид (линейная аппроксимация):
6*А0+9*А1 = 14.2
9*А0+10.2*А1 = 22.2
решить систему уравнений:
получим коэффициенты А0 = 0.438 и А1 = 1.286, тогда полином первой степени будет таким:
P1(x) = 0.438+1.286*x
-
Аппроксимация с помощью математического пакета
Осуществить аппроксимацию таблично заданной функции многочленом 1, 2, 3, 4 и 5-й степени.
В этом примере рассмотрено использование функции linfit(x,y,f), где x,y- соответственно векторы значений аргументов и функции, а f – символьный вектор базисных функций. Использование этой функции позволяет определить вектор коэффициентов аппроксимации методом наименьших квадратов и далее невязку - среднеквадратическую погрешность приближения исходных точек к аппроксимирующей функции (сkо). Степень аппроксимирующего многочлена задается при описании символьного вектора f. В примере представлена аппроксимация таблично заданной функции многочленом 1, 2, 3, 4, 5-й степени, . Вектор s представляет собой набор аппроксимирующих коэффициентов, что позволяет получить аппроксимирующую функцию в явном виде.
Следует построить графики для полиномов 1, 2 и 5 степени.
Проанализировать изменение СКО в зависимости от степени полинома.
|