Файл: История развития средств вычислительной техники.(Счет в древнем мире).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 14.03.2024

Просмотров: 70

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Проект аналитической машины не был реализован, но получил весьма широкую известность и заслужил высокую оценку целого ряда ученых, в первую очередь, математиков. Механические устройства оказались попросту непригодными для осуществления такого грандиозного для того времени плана. Разве могла механика с ее трущимися шестернями и неповоротливыми рычагами воплотить красивейшие схемы, которые спустя десятилетия оказались под силу лишь электронным элементам?

Машина Лейбница.

Машина, созданная Лейбницем в 1694 г., давала возможность механического выполнения операции умножения без последовательного сложения и вычитания. Главной частью ее был так называемый ступенчатый валик - цилиндр с зубцами разной длины, которые взаимодействовали со счетным колесом. Передвигая колесо вдоль валика, можно было его ввести в зацепление с необходимым числом зубцов и обеспечить установку определенной цифры.

Арифметическая машина Лейбница была, по существу, первым в мире арифмометром - машиной, предназначенной для выполнения четырех арифметических действий, позволяющей использовать 8-разрядное множимое и 9-разрядный множитель с получением 16-разрядного произведения. По сравнению с машиной Паскаля было создано принципиально новое вычислительное устройство, существенно ускоряющее выполнение операций умножения и деления. Однако, несмотря на все остроумие его изобретателя, арифмометр Лейбница не получил распространения по двум основным причинам: отсутствие на него устойчивого спроса и конструкционной неточности, сказывающейся при перемножении предельных для него чисел.

Но основная идея Лейбница - идея ступенчатого валика оказалась весьма плодотворной. Вплоть до конца XIX века конструкция валика совершенствовалась и развивалась различными изобретателями механических машин.

Прочие машины.

Во второй половине XIX века появилось целое поколение механических счетных машин. Здесь и "вычислительный снаряд" Слонимского, и оригинальные счетные машины Фельта, Берроуза, Боле, и арифмометр П. Л. Чебышёва.

О машине, построенной великим русским математиком и механиком П. Л. Чебышевым, следует сказать особо. Дело в том, что во всех предыдущих конструкциях перенос десятков из низшего разряда в высший происходил скачкообразно, после того как десяток уже накапливался. В арифмометре Чебышева был использован новый принцип - непрерывная передача десятков. Принцип этот состоит в том, что шестеренка единиц, делая один оборот, поворачивает шестеренку десятков на 1/10 оборота, а шестеренку сотен на 1/100 и т. д. Этим обеспечивается плавное изменение угла поворота всех колес, вступающих во взаимодействие.


Лишь много лет спустя, с применением электропривода, оригинальные идеи, заложенные в конструкции Чебышева, нашли свое признание. Непрерывная, плавная передача позволяла значительно увеличить скорость работы механических устройств с большей надежностью.

На принципе ступенчатого валика Лейбница был построен в 1820 г. арифмометр Томаса - первая счетная машина, которая изготовлялась серийно.

Несколько позже, в 1974 г., петербургским механиком Вильгодтом Однером была создана новая конструкция числового колеса с выдвижными зубьями. Число выдвинутых зубьев определялось углом поворота установочного рычажка до соответствующей цифры на шкале. Колесо Однера оказалось настолько совершенным, что не претерпело принципиальных изменений до наших дней. Арифмометр "Феликс", являющийся модификацией арифмометра Однера, выпускался у нас в стране вплоть до 50-х годов.

7 Электромеханические машины

Как преддверием эпохи электронных вычислительных машин можно рассматривать электромеханические вычислительные машины.

Как ни блестящ был век механических арифмометров, но и он исчерпал свои возможности. Людям нужны были более энергичные помощники. Это заставило изобретателей искать пути совершенствования вычислительной техники, но уже не на механической, а на электромеханической основе.

Небольшой моторчик освободил вычислителя от необходимости крутить ручку, да и скорость счета увеличилась. Сам механизм счетного устройства, поначалу остававшийся неизменным, стал также постепенно модернизироваться. Рычажный набор, который осуществлял медленную установку чисел и приводил к значительному проценту ошибок, заменили более удобным - клавишным. Появились машины, записывающие результат на бумажной ленте, а также другие комбинации счетных и пишущих устройств. Это был уже новый шаг - механизация вычислений, но не их автоматизация. Управление процессом счета все еще ложилось на плечи человека.

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет - от первого табулятора Г. Холлерита (1887 г.) до первой ЭВМ ENIAC (1946 г.).

Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать


Комплекс Холлерита.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый такой комплекс был создан в США Г. Холлеритом в 1887 г. и состоял из ручного перфоратора, сортировочной машины и табулятора. Он предназначался для обработки результатов переписи населения в нескольких странах, в том числе и в России.

В конце XIX в. перепись населения как одна из важнейших статистических задач проводилась регулярно - через 10 лет, это требование статистики строго соблюдали все развитые страны. Обработка полученных данных проводилась в течение нескольких лет, как правило, вручную или с помощью механических вычислительных машин. Причем статистиков уже не удовлетворяли данные только о количестве населения. Необходимы были сведения о национальности, родном языке, возрасте, поле, вероисповедании. Для этого необходимо было классифицировать собранный материал и выполнить счет по различным признакам. При этом объем работы настолько увеличивался, что выполнить его оперативно и качественно на механических арифмометрах или суммирующих машинах оказалось невозможным, - потребовалось создание нового специального класса вычислительных машин, получивших название счетно-аналитических, а с начала 1960-х гг. - перфорационных.

Впервые проблемой механизированной обработки статистической информации занялся талантливый американский изобретатель Герман Холлерит. Его трудовая деятельность началась в Бюро цензов США. Это статистическое управление при министерстве внутренних дел занималось проведением переписей населения и обработкой результатов. Здесь в 1880 г. Холлерит познакомился с доктором Джоном Биллингсом, который сыграл важную роль в его дальнейшей судьбе, предложив заняться исследованиями в области механизированной обработки статистических данных и использовать в качестве основного элемента записи информации, получаемой в процессе переписей и ее последующей обработки, перфорированные карты.

Г. Холлерит долго придерживался другой точки зрения, он был уверен, что наиболее эффективно использовать для записей статистических данных перфоленты и придумал конструкцию специального барабана, на который наматывалась перфолента, и счетчиками отсчитывались отверстия. И все-таки изобретатель был вынужден признать свою идею несостоятельной, т. к. перфолента не способствовала оперативной работе с той или иной записью на длинной бумажной ленте. Он вернулся к предложению Дж. Биллингса и разработал специальную перфокарту, куда в виде пробивок наносились все данные об одном человеке.


Идея перфокарт уже была известна в мире и нашла практическое применение в ткацких станках Ж. Жаккара (1804) и вычислительной машине Ч. Бэббиджа (1833). Не исключено, что Г. Холлерит знал об этом, но как он сам вспоминал, к этой идее его подтолкнула работа кондуктора. Оказывается, в США, чтобы предотвратить мошенничество на железных дорогах и кражу билетов, кондукторы "записывали" физические особенности пассажиров (цвет волос, глаз и т. п. ) компостером в специально отведенных местах на билете.

Замысел Г. Холлерита состоял в том, чтобы на каждого человека завести личную карточку и все подлежащие обработке данные представить отверстиями в фиксированных местах (позициях). Эта перфокарта по виду была не похожа на железнодорожный билет или уже известные карты, а являлась оригинальной авторской запатентованной разработкой. Она была сделана из плотного картона размером приблизительно с долларовую бумажку, но размер карточки мог колебаться в зависимости от количества позиций, каждая из которых отвечала за определенный признак (пол, семейное положение, вероисповедание и т. д.), например в австрийской переписи 1890 г. применялись перфокарты, имеющие 20х12 позиций, в российской переписи 1897 г. - 22х12 позиций.

Сведения заносились на перфокарту вручную с помощью пробивного устройства - пантографа или перфоратора. На лицевой панели перфоратора имеется таблица признаков в виде карты-шаблона с отверстиями по всей координатной сетке, над которой по радиусу перемещается рычаг со штифтом на конце. Если в специальную раму для карточки положить чистую перфокарту и опустить штифт в отверстие, соответствующее какому-либо признаку, то специальное устройство в раме в той же позиции перфокарты пробьет идентичный признак. За час на перфораторе можно заполнить не более 80 карточек.

Теперь можно было либо подсчитать отверстия на всех перфокартах на основной машине - табуляторе, либо распределить их по тому же принципу на сортировке.

Табулятор (электромеханическая машина), внешне напоминающий бюро, работал от больших электрических батарей. На передней панели - электромеханические счетчики, по 10 штук в каждом горизонтальном ряду емкостью 10 000 единиц. Число горизонтальных рядов могло быть от 4 до 12. На столе справа - воспринимающий пресс, который считывает данные с перфокарт и передает их на табулятор или сортировальную машину. В верхней (подвижной) части пресса находятся металлические иголочки на пружинках, их расположение и число соответствует центрам чашечек с ртутью в нижней (неподвижной) части пресса. При считывании данных с перфокарты ее укладывают в пресс и вручную опускают верхнюю часть пресса. В местах пробивок иглы свободно проходят, достигая ртути, цепь замыкается, сигнал от чашечки по проводам поступает к счетчику. Каждой чашке соответствует свой счетчик, на лицевой стороне которого циферблат на 100 делений и две стрелки (большая показывает единицы и десятки, маленькая - сотни). Часовой механизм приводится в движение маленьким электромагнитом. Счетчики съемные, результаты сбрасываются поворотом стрелок вручную. По окончании обработки карточек на табуляторе каждый счетчик показывает, сколько раз в его позиции замыкалась электрическая цепь через отверстие в перфокарте, и подводятся простые итоги по одному признаку. Для статистических исследований большое значение имеют комбинации разных признаков, например пола с возрастом, с образованием и т. д. В таком случае прямое электрическое соединение ртутных чашечек со счетчиками не решит задачу - необходимо дополнительное использование сортировальной машины, которая работала совместно с табулятором, и наличие электромагнитных реле. Электромагнитные реле, известные с 1831 г., до Г. Холлерита не применялись в счетной технике. В необходимом количестве (не более 120 штук) реле устанавливали на задней панели табулятора. В сортировальной машине они располагались в каждой из 26 ячеек для отсортированных перфокарт и соединялись электропроводами со счетчиками табулятора. Скорость обработки карточек на табуляторе составляла 1000 штук в час.


Итак, управление механическими счетчиками и сортировкой осуществлялось электрическими импульсами, возникающими при замыкании электрической цепи при наличии отверстия в перфокарте. Импульсы использовались и для ввода чисел, и для управления работой машины. Поэтому машина Г. Холлерита была признана первой электромеханической счетной машиной с программным управлением. Она представляла собой комплект устройств (перфоратора, сортировальной машины и табулятора) различного функционального назначения, но связанных между собой технологически процессом обработки информации. Счетная машина задумывалась Г. Холлеритом как Census Machine (машина для переписи). Она по праву считается "первой статистической".

Машина Тьюринга.

Алан Мэтисон Тьюринг - выдающийся английский математик, совершивший грандиозное открытие, которое положило начало компьютерной эре. В свои неполные 24 года он мысленно сконструировал абстрактный механизм, призванный решить одну из фундаментальных проблем математики, поставленную знаменитым немецким профессором Давидом Гильбертом в 1900 г. на парижском Международном конгрессе математиков. Тем самым Тьюринг не только дал четкий ответ на эту конкретную задачу, но и - что гораздо важнее - сформировал научную основу алгоритма и предвосхитил архитектуру современных компьютеров. Более того, сама идея решения задач путем конструирования абстрактных механизмов, исполняемых на электронных устройствах, стала важнейшей для зарождения новой профессиональной сферы интеллектуальной деятельности - программирования. Тьюринг показал, что не существует "чудесной машины", способной решать все математические задачи. Но продемонстрировав ограниченность возможностей, он на бумаге построил то, что позволяет решать очень многое и что мы теперь называем словом "компьютер".

Машина Тьюринга имеет бесконечную в обе стороны ленту, разделенную на квадратики (ячейки). В каждой ячейке может быть записан некоторый символ из фиксированного (для данной машины) конечного множества, называемого алфавитом данной машины. Один из символов алфавита выделен и называется "пробелом", предполагается, что изначально вся лента пуста, то есть заполнена пробелами.

Машина Тьюринга может менять содержимое ленты с помощью специальной читающей и пишущей головки, которая движется вдоль ленты. В каждый момент головка находится в одной из ячеек. Машина Тьюринга получает от головки информацию о том, какой символ та видит, и в зависимости от этого (и от своего внутреннего состояния) решает, что делать, то есть какой символ записать в текущей ячейке и куда сдвинуться после этого (налево, направо или остаться на месте). При этом также меняется внутреннее состояние машины (мы предполагаем, что машина не считая ленты имеет конечную память, то есть конечное число внутренних состояний). Еще надо договориться, с чего начинается и когда кончается работа.