Файл: Сенсорные системы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.03.2024

Просмотров: 22

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
филогенетически более древними структурами, к ним относятся обонятельные, тактильные, температурные, болевые рецепторы и проприорецепторы.4

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона. Это клетка, например, фоторецептор, эпителиальной природы или нейроэктодермального происхождения. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.

По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные (фазнотонические), адаптирующиеся со средней скоростью. Примером быстро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и прикосновения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы. Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи.

Большинство рецепторов возбуждаются в ответ на действие стимулов только одной физической природы и поэтому относятся к мономодальным. Их можно возбудить и некоторыми неадекватными раздражителями, например, фоторецепторы — сильным давлением на глазное яблоко, а вкусовые рецепторы — прикосновением языка к контактам гальванической батареи, но получить качественно различаемые ощущения в таких случаях невозможно.

Наряду с мономодальными существуют полимодальные рецепторы, адекватными стимулами которых могут служить раздражители разной природы. К такому типу
рецепторов принадлежат некоторые болевые рецепторы, или ноцицепторы (лат. nocens — вредный), которые можно возбудить механическими, термическими и химическими стимулами. Полимодальность имеется у терморецепторов, реагирующих на повышение концентрации калия во внеклеточном пространстве так же, как на повышение температуры.

Общие механизмы возбуждения рецепторов

При действии стимула в рецепторе происходит преобразование энергии внешнего раздражения в рецепторный сигнал (трансдукция сигнала). Этот процесс включает в себя три основных этапа:

  1. взаимодействие стимула с рецепторной белковой молекулой, которая находится в мембране рецептора;

  2. усиление и передачу стимула в пределах рецепторной клетки

  3. открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).

Чувствительность рецепторных элементов к адекватным раздражителям,

к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор – при действии одиночного кванта света.

Механизм возбуждения рецепторов связан с изменением проницаемости клеточной мембраны для ионов калия и натрия. Когда раздражение достигает пороговой величины, возбуждается сенсорный нейрон, посылающий импульс в центральную нервную систему. Можно сказать, что рецепторы кодируют поступающую информацию в виде электрических сигналов. Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала). При действии стимула на рецепторную клетку в белково-липидном слое мембраны происходит изменение пространственной конфигурации белковых рецепторных молекул. Это приводит к изменению проницаемости мембраны для определенных ионов, чаще всего для ионов натрия, но в последние годы открыта еще и роль калия в этом процессе. Возникают ионные токи, изменяется заряд мембраны и происходит генерация
рецепторного потенциала.5

Свойства сенсорных систем


Основными свойствами сенсорных систем являются следующие:

Высокая чувствительность к адекватному раздражителю. Все отделы сенсорных систем, и прежде всего рецепторы, обладают высокой возбудимостью. Так, фоторецепторы сетчатки могут возбуждаться при действии лишь нескольких квантов света, обонятельные рецепторы информируют организм о появлении единичных молекул пахучих веществ. Однако при рассмотрении этого свойства сенсорных систем предпочтительнее использовать термин «чувствительность», а не «возбудимость», поскольку у человека оно определяется по возникновению ощущений.

Чувствительность оценивают с помощью ряда критериев.

Порог ощущения (абсолютный порог) — минимальная сила раздражения, вызывающая такое возбуждение сенсорной системы, которое воспринимается субъективно в виде ощущения.

Порог различения (дифференциальный порог) — минимальное изменение силы действующего раздражителя, воспринимаемое субъективно в виде изменения интенсивности ощущения.

Интенсивность ощущений при одной и той же силе раздражителя может быть различной, поскольку зависит от уровня возбудимости различных структур сенсорной системы на всех его уровнях.

Инерционность. Это сравнительно медленное возникновение и исчезновение ощущений. Латентное время возникновения ощущений определяется латентным периодом возбуждения рецепторов и временем, необходимым для перехода возбуждения в синапсах с одного нейрона на другой, временем возбуждения ретикулярной формации и генерализации возбуждения в коре больших полушарий. Сохранение на некоторый период ощущений после выключения раздражителя объясняется явлением последействия в ЦНС — в основном циркуляцией возбуждения. Так, зрительное ощущение не возникает и не исчезает мгновенно.

Адаптация сенсорной системы. При постоянной силе длительно действующего раздражителя адаптация проявляется в основном в понижении абсолютной и повышении дифференциальной чувствительности. Это свойство присуще всем отделам сенсорных систем, но наиболее ярко оно проявляется на уровне рецепторов и заключается в изменении не только их возбудимости и импульсации, но и показателей функциональной мобильности, т.е. в изменении числа функционирующих рецепторных структур (П. Г. Снякин). По скорости адаптации все рецепторы делят на быстро и медленно адаптирующиеся, иногда выделяют и среднюю по скорости адаптации группу рецепторов. В проводниковом и корковом отделах сенсорной системы адаптация проявляется в уменьшении числа активированных волокон и нервных клеток.


Важную роль в сенсорной адаптации играет эфферентная регуляция, которая осуществляется путем нисходящих влияний, из меняющих деятельность нижерасположенных структур сенсорной системы. Благодаря этому возникает феномен «настройки» сенсорных систем на оптимальное восприятие раздражителей в условиях изменившейся среды.6 Общие свойства анализаторов

  • Чрезвычайно высокая чувствительность к адекватным раздражителям. Количественной мерой чувствительности является пороговая интенсивность, то есть наименьшая интенсивность раздражителя, воздействие которого дает ощущение.

  • Наличие дифференциальной чувствительности (иначе: различительной, разностной, контрастной), то есть способности устанавливать различие по интенсивности между раздражителями.

  • Адаптация, то есть способность анализаторов приспосабливать уровень своей чувствительности к интенсивности раздражителя.

  • Тренируемость анализаторов, то есть повышение чувствительности и ускорение адаптационных процессов под влиянием самой сенсорной деятельности.

  • Способность анализаторов некоторое время сохранять ощущение после прекращения действия раздражителя. Такая «инерция» ощущений обозначается как последствие, или последовательные образы.

  • Постоянное взаимодействие анализаторов в условиях нормального функционирования.

Список используемой литературы

  1. Воронин Л.Г. Курс лекций по высшей нервной деятельности /

Л.Г. Воронин. – М.: Наука, 1984. – 223 с.

  1. Данилова Н.Н. Физиология высшей нервной деятельности / Н.Н.

Данилова, А.Л. Крылова. – М.: Учебная литература, 1997. – 373 с.

  1. Дмитриев А.С. Физиология высшей нервной деятельности / А.С. Дмитриев. – М.: Наука, 1974. – 454 с.

  2. Мышкин И.Ю. Физиология сенсорных систем и высшей нервной деятельности: учеб. пособие / И.Ю. Мышкин. – Ярославль: ЯрГУ, 2008. – 168 с.

  3. Смирнов В.М. Физиология сенсорных систем и высшая нервная деятельность / В.М. Смирнов, С.М. Будылина. – М.: Академа, 2003. – 303 с.

  4. Шульговский В.В. Физиология высшей нервной деятельности с основами нейробиологии / В.В. Шульговский. – М.: Академа, 2003. – 460 с.

1 Воронин Л.Г. Курс лекций по высшей нервной деятельности / Л.Г. Воронин. – М.: Наука, 1984. – 223 с.


2 Дмитриев А.С. Физиология высшей нервной деятельности / А.С. Дмитриев. – М.: Наука, 1974. – 454 с.

3 Мышкин И.Ю. Физиология сенсорных систем и высшей нервной деятельности: учеб. пособие / И.Ю. Мышкин. – Ярославль: ЯрГУ, 2008. – 168 с.

4 Данилова Н.Н. Физиология высшей нервной деятельности / Н.Н. Данилова, А.Л. Крылова. – М.: Учебная литература, 1997. – 373 с.

5 Шульговский В.В. Физиология высшей нервной деятельности с основами нейробиологии / В.В. Шульговский. – М.: Академа, 2003. – 460 с.

6 Смирнов В.М. Физиология сенсорных систем и высшая нервная деятельность / В.М. Смирнов, С.М. Будылина. – М.: Академа, 2003. – 303 с.