Файл: Введение. Общие вопросы применения информационных систем в научных исследованиях. Основные задачи теории информационных систем.doc
Добавлен: 26.04.2024
Просмотров: 99
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Основные понятия теории систем
Информационные динамические системы
Классификация информационных систем
Технические, биологические и другие системы
Детерминированные и стохастические системы
Хорошо и плохо организованные системы
Классификация систем по сложности
Уровни представления информационных систем
Методы и модели описания систем
Количественные методы описания систем
Функциональные модули крейтов УСО
Мировые информационные ресурсы.
, {e, u, z} или {e, х, u, z}.
Таким образом, состояние − это множество существенных свойств, которыми система обладает в данный момент времени.
Поведение. Если система способна переходить из одного состояния в другое (например, z1®z2®z3), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его закономерности. С учетом введенных выше обозначений поведение можно представить как функцию zt=f(zt-1, xt, ut).
Внешняя среда. Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состояния вызывает изменение поведения системы.
Модель. Под моделью системы понимается описание системы, отображающее определенную группу ее свойств. Углубление описания − детализация модели. Создание модели системы позволяет предсказывать ее поведение в определенном диапазоне условий.
Модель функционирования (поведения) системы − это модель, предсказывающая изменение состояния системы во времени, например: натурные (аналоговые), электрические, машинные на ЭВМ и др.
Равновеcие − это способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранить свое состояние сколь угодно долго.
Устойчивость. Под устойчивостью понимается способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий. Эта способность обычно присуща системам при постоянном и, если только отклонения не превышают некоторого предела.
Состояние равновесия, в которое система способна возвращаться, по аналогии с техническими устройствами называют устойчивым состоянием равновесия. Равновесие и устойчивость в экономических и организационных системах − гораздо более сложные понятия, чем в технике, и до недавнего времени ими пользовались только для некоторого предварительного описательного представления о системе. В последнее время появились попытки формализованного отображения этих процессов и в сложных организационных системах, помогающие выявлять параметры, влияющие на их протекание и взаимосвязь.
Развитие. Исследованию процесса развития, соотношения процессов развития и устойчивости, изучению механизмов, лежащих в их основе, уделяют в кибернетике и теории систем большое внимание. Понятие развития помогает объяснить сложные термодинамические и информационные процессы в природе и обществе.
Цель. Применение понятия "цель" и связанных с ним понятий целенаправленности, целеустремленности, целесообразности сдерживается трудностью их однозначного толкования в конкретных условиях. Это связано с тем, что процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен и не до конца изучен. Его исследованию большое внимание уделяется в психологии, философии, кибернетике. В Большой Советской Энциклопедии цель определяется как "заранее мыслимый результат сознательной деятельности человека". В практических применениях цель − это идеальное устремление, которое позволяет коллективу увидеть перспективы или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к идеальным устремлениям.
В настоящее время в связи с усилением программно-целевых принципов в планировании исследованию закономерностей целеобразования и представления целей в конкретных условиях уделяется все больше внимания. Например: энергетическая программа, продовольственная программа, жилищная программа, программа перехода к рыночной экономике. Понятие цель лежит в основе развития системы.
Информация − совокупность сведений, воспринимаемых из окружающий среды, выдаваемых в окружающую среду либо сохраняемых внутри информационной системы.
Данные − представленная в формальном виде конкретная информация об объектах предметной области, их свойствах и взаимосвязях, отражающая события и ситуации в этой области.
Данные представляются в виде, позволяющим автоматизировать их сбор, хранение и дальнейшую обработку информационными системами. Данные − это запись в соответствующем коде.
Информация в ЭВМ делится на:
- процедурную (выполняемые программы);
- декларативную (данные, которые обрабатываются программами).
Организация хранения и обработки больших объемов информации привела к появлению баз данных.
Понятие модели трактуется неоднозначно. В основе его лежит сходство процессов протекающих в реальной действительности и в заменяемым реальный объект модели. В философии, под моделью понимается широкая категория кибернетики, заменяющая изучаемый объект его упрощенным представлением, с целью более глубокого познания оригинала. Под математической моделью (в дальнейшим просто моделью) понимается идеальное математическое отражение исследуемого объекта.
Фундаментальные (детальные) модели, количественно описывающих поведение или свойства системы, начиная с такого числа основных физических допущений (первичных принципов), какое только является возможным. Такие модели предельно подробны и точны для явлений, которые они описывают.
Феноменологические модели используются для качественного описания физических процессов, когда точные соотношения неизвестны, либо слишком сложны для применения. Такие приближенные или осредненные модели обычно обоснованы физически и содержат входные данные, полученные из эксперимента или более фундаментальных теорий. Феноменологическая модель основывается на качественном понимании физической ситуации. При получении феноменологических моделей используются общие принципы и условия сохранения.
В широком смысле слова под управлением понимается организационную деятельность
, осуществляющую функции и направленную на достижении определенных целей.
Структура системы управления.
Интеллектуальные информационные системы можно классифицировать следующим образом:
Структура информационной системы
Типы обеспечивающих подсистем
Структуру информационной системы составляет совокупность отдельных ее частей, называемых "подсистемами".
Подсистема − это часть системы, выделенная по какому-либо признаку.
Общую структуру информационной системы можно рассматривать как совокупность подсистем независимо от сферы применения. В этом случае говорят о структурном признаке классификации, а подсистемы называют обеспечивающими. Таким образом, структура любой информационной системы может быть представлена совокупностью обеспечивающих подсистем (рис. 1).
Среди обеспечивающих подсистем обычно выделяют информационное, техническое, математическое, программное, организационное и правовое обеспечение.
Рис. 1. Структура информационной системы как совокупность
обеспечивающих подсистем
Информационное обеспечение
Назначение подсистемы информационного обеспечения состоит в своевременном формировании и выдаче достоверной информации для принятия управленческих решений.
Информационное обеспечение − совокупность единой системы классификации и кодирования информации, унифицированных систем документации, схем информационных потоков, циркулирующих в организации, а также методология построения баз данных.
Унифицированные системы документации создаются на государственном, республиканском, отраслевом и региональном уровнях. Главная цель при этом − обеспечение сопоставимости показателей различных сфер общественного производства. Разработаны стандарты, где устанавливаются требования:
Однако, несмотря на существование унифицированной системы документации, при обследовании большинства организаций постоянно выявляется целый комплекс типичных недостатков:
Поэтому устранение указанных недостатков является одной из задач, стоящих при создании информационного обеспечения.
При создании информационных систем очень важно учитывать два аспекта: изучение потоков информации, циркулирующих в фирме и создание баз данных для обслуживания запросов организации.
Схемы информационных потоков отражают маршруты движения информации и ее объемы, места возникновения первичной информации и использования результатной информации. За счет анализа структуры подобных схем можно выработать меры по совершенствованию всей системы управления.
В качестве примера простейшей схемы потоков данных можно привести схему, где отражены все этапы прохождения служебной записки или записи в базе данных о приеме на работу сотрудника - от момента ее создания до выхода приказа о его зачислении на работу.
Построение схем информационных потоков, позволяющих выявить объемы информации и провести ее детальный анализ, обеспечивает:
При этом подробно должны рассматриваться вопросы взаимосвязи движения информации по уровням управления. Следует выявить, какие показатели необходимы для принятия управленческих решений, а какие нет. К каждому исполнителю должна поступать только та информация, которая используется.
Методология построения баз данных базируется на теоретических основах их проектирования. Для понимания концепции методологии приведем основные ее идеи в виде двух последовательно реализуемых на практике этапов:
1-й этап − обследование всех функциональных подразделений фирмы с целью:
Таким образом, состояние − это множество существенных свойств, которыми система обладает в данный момент времени.
Поведение. Если система способна переходить из одного состояния в другое (например, z1®z2®z3), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его закономерности. С учетом введенных выше обозначений поведение можно представить как функцию zt=f(zt-1, xt, ut).
Внешняя среда. Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состояния вызывает изменение поведения системы.
Модель. Под моделью системы понимается описание системы, отображающее определенную группу ее свойств. Углубление описания − детализация модели. Создание модели системы позволяет предсказывать ее поведение в определенном диапазоне условий.
Модель функционирования (поведения) системы − это модель, предсказывающая изменение состояния системы во времени, например: натурные (аналоговые), электрические, машинные на ЭВМ и др.
Равновеcие − это способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранить свое состояние сколь угодно долго.
Устойчивость. Под устойчивостью понимается способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий. Эта способность обычно присуща системам при постоянном и, если только отклонения не превышают некоторого предела.
Состояние равновесия, в которое система способна возвращаться, по аналогии с техническими устройствами называют устойчивым состоянием равновесия. Равновесие и устойчивость в экономических и организационных системах − гораздо более сложные понятия, чем в технике, и до недавнего времени ими пользовались только для некоторого предварительного описательного представления о системе. В последнее время появились попытки формализованного отображения этих процессов и в сложных организационных системах, помогающие выявлять параметры, влияющие на их протекание и взаимосвязь.
Развитие. Исследованию процесса развития, соотношения процессов развития и устойчивости, изучению механизмов, лежащих в их основе, уделяют в кибернетике и теории систем большое внимание. Понятие развития помогает объяснить сложные термодинамические и информационные процессы в природе и обществе.
Цель. Применение понятия "цель" и связанных с ним понятий целенаправленности, целеустремленности, целесообразности сдерживается трудностью их однозначного толкования в конкретных условиях. Это связано с тем, что процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен и не до конца изучен. Его исследованию большое внимание уделяется в психологии, философии, кибернетике. В Большой Советской Энциклопедии цель определяется как "заранее мыслимый результат сознательной деятельности человека". В практических применениях цель − это идеальное устремление, которое позволяет коллективу увидеть перспективы или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к идеальным устремлениям.
В настоящее время в связи с усилением программно-целевых принципов в планировании исследованию закономерностей целеобразования и представления целей в конкретных условиях уделяется все больше внимания. Например: энергетическая программа, продовольственная программа, жилищная программа, программа перехода к рыночной экономике. Понятие цель лежит в основе развития системы.
Понятие информации
Информация − совокупность сведений, воспринимаемых из окружающий среды, выдаваемых в окружающую среду либо сохраняемых внутри информационной системы.
Данные − представленная в формальном виде конкретная информация об объектах предметной области, их свойствах и взаимосвязях, отражающая события и ситуации в этой области.
Данные представляются в виде, позволяющим автоматизировать их сбор, хранение и дальнейшую обработку информационными системами. Данные − это запись в соответствующем коде.
Информация в ЭВМ делится на:
- процедурную (выполняемые программы);
- декларативную (данные, которые обрабатываются программами).
Организация хранения и обработки больших объемов информации привела к появлению баз данных.
Модель и цель системы
Понятие модели трактуется неоднозначно. В основе его лежит сходство процессов протекающих в реальной действительности и в заменяемым реальный объект модели. В философии, под моделью понимается широкая категория кибернетики, заменяющая изучаемый объект его упрощенным представлением, с целью более глубокого познания оригинала. Под математической моделью (в дальнейшим просто моделью) понимается идеальное математическое отражение исследуемого объекта.
Фундаментальные (детальные) модели, количественно описывающих поведение или свойства системы, начиная с такого числа основных физических допущений (первичных принципов), какое только является возможным. Такие модели предельно подробны и точны для явлений, которые они описывают.
Феноменологические модели используются для качественного описания физических процессов, когда точные соотношения неизвестны, либо слишком сложны для применения. Такие приближенные или осредненные модели обычно обоснованы физически и содержат входные данные, полученные из эксперимента или более фундаментальных теорий. Феноменологическая модель основывается на качественном понимании физической ситуации. При получении феноменологических моделей используются общие принципы и условия сохранения.
Управление
В широком смысле слова под управлением понимается организационную деятельность
, осуществляющую функции и направленную на достижении определенных целей.
Структура системы управления.
Информационные динамические системы
Интеллектуальные информационные системы можно классифицировать следующим образом:
-
экспертные системы; -
системы для широкого круга пользователей; -
системы для специалистов; -
САПР; -
интеллектуальные системы; -
расчетно-логические системы; -
обучающие системы; -
и др.
Структура информационной системы
Типы обеспечивающих подсистем
Структуру информационной системы составляет совокупность отдельных ее частей, называемых "подсистемами".
Подсистема − это часть системы, выделенная по какому-либо признаку.
Общую структуру информационной системы можно рассматривать как совокупность подсистем независимо от сферы применения. В этом случае говорят о структурном признаке классификации, а подсистемы называют обеспечивающими. Таким образом, структура любой информационной системы может быть представлена совокупностью обеспечивающих подсистем (рис. 1).
Среди обеспечивающих подсистем обычно выделяют информационное, техническое, математическое, программное, организационное и правовое обеспечение.
Рис. 1. Структура информационной системы как совокупность
обеспечивающих подсистем
Информационное обеспечение
Назначение подсистемы информационного обеспечения состоит в своевременном формировании и выдаче достоверной информации для принятия управленческих решений.
Информационное обеспечение − совокупность единой системы классификации и кодирования информации, унифицированных систем документации, схем информационных потоков, циркулирующих в организации, а также методология построения баз данных.
Унифицированные системы документации создаются на государственном, республиканском, отраслевом и региональном уровнях. Главная цель при этом − обеспечение сопоставимости показателей различных сфер общественного производства. Разработаны стандарты, где устанавливаются требования:
-
к унифицированным системам документации; -
к унифицированным формам документов различных уровней управления; -
к составу и структуре реквизитов и показателей; -
к порядку внедрения, ведения и регистрации унифицированных форм документов.
Однако, несмотря на существование унифицированной системы документации, при обследовании большинства организаций постоянно выявляется целый комплекс типичных недостатков:
-
чрезвычайно большой объем документов для ручной обработки; -
одни и те же показатели часто дублируются в разных документах; -
работа с большим количеством документов отвлекает специалистов от решения непосредственных задач; -
имеются показатели, которые создаются, но не используются, и др.
Поэтому устранение указанных недостатков является одной из задач, стоящих при создании информационного обеспечения.
При создании информационных систем очень важно учитывать два аспекта: изучение потоков информации, циркулирующих в фирме и создание баз данных для обслуживания запросов организации.
Схемы информационных потоков отражают маршруты движения информации и ее объемы, места возникновения первичной информации и использования результатной информации. За счет анализа структуры подобных схем можно выработать меры по совершенствованию всей системы управления.
В качестве примера простейшей схемы потоков данных можно привести схему, где отражены все этапы прохождения служебной записки или записи в базе данных о приеме на работу сотрудника - от момента ее создания до выхода приказа о его зачислении на работу.
Построение схем информационных потоков, позволяющих выявить объемы информации и провести ее детальный анализ, обеспечивает:
-
исключение дублирующей и неиспользуемой информации; -
классификацию и рациональное представление информации.
При этом подробно должны рассматриваться вопросы взаимосвязи движения информации по уровням управления. Следует выявить, какие показатели необходимы для принятия управленческих решений, а какие нет. К каждому исполнителю должна поступать только та информация, которая используется.
Методология построения баз данных базируется на теоретических основах их проектирования. Для понимания концепции методологии приведем основные ее идеи в виде двух последовательно реализуемых на практике этапов:
1-й этап − обследование всех функциональных подразделений фирмы с целью:
-
понять специфику и структуру ее деятельности; -
построить схему информационных потоков; -
проанализировать существующую систему документооборота; -
определить информационные объекты и соответствующий состав реквизитов (параметров, характеристик), описывающих их свойства и назначение.