Файл: Реферат по дисциплине Языки программирования.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 18.10.2024

Просмотров: 20

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТКафедра «Компьютерные технологии и системы РЕФЕРАТ по дисциплине «Языки программирования»Тема: «История создания и развития ЭВМ. поколения»Студент гр. О-22-ИСТ-2-истд-Б,___________________Гордеев А.А.номер зач. книжки 22.0579Преподаватель________________Вдовиченко О.А.Брянск 2022 г. Содержание РЕФЕРАТ 1Введение 31. Четыре поколения ЭВМ 5 I поколение ЭВМ (до 1955 г.) 5II поколение (1958-1964 гг.) 8 III поколение (1964-1972 гг.) 9 IV поколение (с 1972 г. по настоящее время) 10 2. Перспективы развития вычислительной техники 14 Заключение 16Список использованных источников 17 Введение Первая страница в истории создания вычислительных машин связана с именем французского философа, писателя, математика и физика Блеза Паскаля. В 1641г. он сконструировал механический вычислитель, который позволял складывать и вычитать числа. В 1673 г. выдающийся немецкий ученый Готфрид Лейбниц построил первую счетную машину, способную механически выполнять все четыре действия арифметики. Ряд важнейших ее механизмов применяли вплоть до середины XX в. в некоторых типах машин. К типу машины Лейбница могут быть отнесены все машины, в частности и первые ЭВМ, производившие умножение как многократное сложение, а деление — как многократное вычитание. Главным достоинством всех этих машин являлись более высокие, чем у человека, скорость и точность вычислений. Их создание продемонстрировало принципиальную возможность механизации интеллектуальной деятельности человека.Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов. С каждым новым поколением увеличивалось быстродействие, уменьшались потребляемая мощность и масса ЭВМ, повышалась их надежность. При этом возрастали их «интеллектуальные» возможности — способность «понимать» человека и обеспечивать ему эффективные средства для обращения к ЭВМ. 1. Четыре поколения ЭВМ Можно выделить 4 основные поколения ЭВМ. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. I поколение ЭВМ (до 1955 г.) Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными — лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы — 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 — 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации «современного» компьютера того времени требовались специальные системы не было, охлаждения. Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.Основные компьютеры первого поколения: В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж.У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину — “Эниак” (Electronic Numerical Integrator and Computer), которая предназначалась для решения задач баллистики. Она работала в тысячу раз быстрее, чем «Марк-1», выполняя за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м. в длину, объём — 85 м3., вес — 30 тонн. Использовалось около 20000 электронных ламп и1500 реле. Мощность ее была до 150 кВт. Первая машина с хранимой программой — ”Эдсак” — была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения — 8,5 мс. В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ — Малой электронной счетно-решающей машины (МЭСМ). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20 разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах. В 1951 г. была создана машина “Юнивак”(UNIVAC) — первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации. Итоги поколения:Элементная база первых вычислительных машин – электронные лампы – определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным.Объем оперативной памяти, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте. Очень трудоемким и малоэффективным был процесс общения человека с машиной первого поколения. Как правило, сам разработчик, написавший программу в машинных кодах, вводил ее в память ЭВМ с помощью перфокарт и затем вручную управлял ее выполнением. Электронный монстр на определенное время отдавался в безраздельное пользование программисту, и от уровня его мастерства, способности быстро находить и исправлять ошибки и умения ориентироваться за пультом ЭВМ во многом зависела эффективность решения вычислительной задачи. Ориентация на ручное управление определяла отсутствие каких бы то ни было возможностей буферизации программ. II поколение (1958-1964 гг.) В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить

III поколение (1964-1972 гг.)

IV поколение (с 1972 г. по настоящее время)

2. Перспективы развития вычислительной техники

Заключение

Список использованных источников



Сотрудникам Белловских лабораторий удалось создать транзистор размером в 60 атомов! Они считают, что транзисторы ко дню своего шестидесятилетия по ряду параметров достигнут физических пределов. Так, размер транзистора должен стать чуть меньше 0,01 мкм (уже достигнут размер 0,05 мкм). Это означает, что на чипе площадью 10 кв. см можно будет разместить 20 000 000 транзисторов.

Описывая бурно развивающуюся в настоящее время технологию производства пластиковых транзисторов, они приходят к достаточно логичному выводу, что сумма всех усовершенствований приведет к созданию «финального компьютера», более мощного, чем современные рабочие станции. Компьютер этот будет иметь размер почтовой марки и, соответственно, цену, не превышающую цены почтовой марки.

Представим себе, наконец, гибкий экран телевизора или компьютерного монитора, который не разобьется, если швырнуть его на землю. А что можно сказать о пластинке величиной с обычную кредитную карточку, заполненной массой нужнейшей информации, включая ту, которая обычно и хранится в кредитной карточке, но выполненной из такого материала, что она никогда не потребует замены?

В последнее время высказывались и мысли о том, что давно пора расстаться с электронами как основными действующими лицами на сценах микроэлектроники и обратиться к фотоном. Использование фотонов якобы позволит изготовить процессор компьютера размером с атом.

Заключение


Сегодня, с таким колоссальным развитием ИТ-технологий и массовой компьютеризацией нашей планеты, когда компьютеры становятся нашим незаменимым помощником, все больше внедряясь в повседневную жизнь человека, принципы архитектуры компьютера остаются неизменными еще с того момента, как знаменитый математик Джон фон Нейман в 1945 году подготовил доклад об устройстве и функционировании универсальных вычислительных устройств, то есть компьютеров.

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография).

Ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров — устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса,
узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.

Список использованных источников


1. Алтухов Е.В., Рыбалко Л.А., Савченко В.С. Основы информатики и вычислительной техники, М., «Высшая школа», 1992. 2. Симонович С.В., Евсеев Г.А., Алексеев А.Г. Общая информатика, М., 1999. 3. Шафрин Ю. Информационные технологии, М., 1998. 4. В.Э.Фигурнов, «IBM PC для пользователя», М., «Инфра-М»1995г. 5. Казиев В.М. Математика и информатика (в 3-х частях). – Нальчик, «Полиграфсервис и Т», 2001.