ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.03.2024
Просмотров: 20
Скачиваний: 0
(рис. 1, І), а плівки негативних фоторезистів, навпаки, під дією світла стають нерозчинними, у той час коли неосвітлені ділянки при проявленні розчиняються (рис. 1, II).У негативних фоторезистах на основі полівінілцинамату (ПВЦ) полімерною основою є ефір полівінілового спирту, з молекулами якого хімічно зв'язані молекули ефіру цинамоїльної кислоти. Ця кислота є світлочутливим компонентом, до структури якого входять групи з відносно енергією зв’язку Під час дії випромінювання з
енергією кванта відбувається розрив цих зв'язків (фотоліз) та утворення зовнішніх зв'язків між молекулами ПВЦ. У результаті цього молекулярні ланцюжки ПВЦ утворюють тривимірну структуру. Максимум власної чутливості відповідає довжині хвилі 280 нм. Фоторезисти на основі каучуку мають максимальну чутливість на хвилі 370 нм і є стійкими до кислот та лугів. У позитивних резистах як світлочутливий матеріал використовують нафтохінонциазід (НХД). Унаслідок випромінювання і розриву зв'язків утворюється індикарбонова кислота. Для переведення цієї кислоти у
розчинну сіль необхідно подіяти на неї проявником із властивістю лугу. Позитивні фоторезисти мають підвищену роздільну здатність. Максимум поглинання припадає на 450 нм.
-
Фоторезисти. Означення, порівняльна характеристика негативних та позитивних фоторезистів.
Фоторезисти. На кожній стадії літографічного процесу діють фактори, які спотворюють рисунок фотошаблону. Такі фактори дуже чітко виявляються у товстих фотошарах. Практично встановлено, що товщина фотошару повинна в 3-4 рази бути меншою від мінімальних розмірів елементів рисунка. Крім цього, набухання товстих плівок у водних розчинах викликає внутрішні напруження та знижує адгезію. З іншого боку, товщина фотошару повинна бути достатньою, щоб протидіяти дії реактивів та перекривати локальні дефекти у структурі фотошару. Товщину фотошару вибирають у межах 0,5 - 1,5 мкм. Залежності від механізму фотохімічних процесів, що проходять під дією випромінювання, розчинність експонованих ділянок фоторезисту може зростати або зменшуватись. У першому випадку фоторезисти мають назву позитивних, у другому – негативних. Таким чином, плівки позитивних фоторезистів під дією випромінювання стають нестійкими і розчиняються у процесі проявлення
(рис. 1, І), а плівки негативних фоторезистів, навпаки, під дією світла стають нерозчинними, у той час коли неосвітлені ділянки при проявленні розчиняються (рис. 1, II).У негативних фоторезистах на основі полівінілцинамату (ПВЦ) полімерною основою є ефір полівінілового спирту, з молекулами якого хімічно зв'язані молекули ефіру цинамоїльної кислоти. Ця кислота є світлочутливим компонентом, до структури якого входять групи з відносно енергією зв’язку Під час дії випромінювання з
енергією кванта відбувається розрив цих зв'язків (фотоліз) та утворення зовнішніх зв'язків між молекулами ПВЦ. У результаті цього молекулярні ланцюжки ПВЦ утворюють тривимірну структуру. Максимум власної чутливості відповідає довжині хвилі 280 нм. Фоторезисти на основі каучуку мають максимальну чутливість на хвилі 370 нм і є стійкими до кислот та лугів. У позитивних резистах як світлочутливий матеріал використовують нафтохінонциазід (НХД). Унаслідок випромінювання і розриву зв'язків утворюється індикарбонова кислота. Для переведення цієї кислоти у
розчинну сіль необхідно подіяти на неї проявником із властивістю лугу. Позитивні фоторезисти мають підвищену роздільну здатність. Максимум поглинання припадає на 450 нм.
-
Практичнi методи проведення iонної iмплантацiї
Іонне легування широко застосовується при створенні напівпровідникових мікросхем та транзисторних приладів. На відміну від дифузії, іонне легування дозволяє створювати шари з товщиною меншою 0,1 мкм з високою відтворюваністю параметрів.
Іони елементів, які використовуються зазвичай для створення домішкової провідності, проникаючи у кристал напівпровідника, займають у його ґратці положення атомів заміщення і створюють відповідний тип провідності. Легуючи в монокристал кремнію іони III і V груп, можна отримати p-n перехід в будь-якому місці і на будь-якої площі кристалу.
При виготовленні біполярних транзисторів іонну імплантацію використовують для отримання емітера, бази, колектора, сильнолегованих областей для колекторного і базового контактів, розподільної дифузії, прихованих n+-шарів тощо.
Іони азоту застосовуються для зміцнення поверхні сталевих ріжучих інструментів (фрези, свердла та ін). Імплантація цих іонів запобігає утворенню тріщин на поверхні металу і зменшує коррозійні та фрикційні властивості сталі, що є важливим у медицині при виготовлення протезів, авіа- і космобудованні.
Технологія іонної імплантації дозволяє обробляти робочі лопатки парових турбін розміром до 1700 мм.
Іонна імплантація використовується як один з методів для надання верхньому шару металу аморфної структури.
-
Молекулярно-променева епiтаксiя.
Молекулярно-пучковая эпитаксия (МПЭ) или молекулярно-лучевая эпитаксия (МЛЭ) — эпитаксиальный рост в условиях сверхвысокого вакуума. Позволяет выращивать гетероструктуры заданной толщины с моноатомно гладкими гетерограницами и с заданным профилем легирования. В установках МПЭ имеется возможность исследовать качество плёнок «in situ» (то есть прямо в ростовой камере во время роста). Для процесса эпитаксии необходимы специальные хорошо очищенные подложки с атомарногладкой поверхностью.
Молекулярно-променева епітаксія, МПЕ (англ. Molecular-beam epitaxy, MBE) — метод епітаксіального росту кристалів в умовах надвисокого (10−8 Па) вакууму.
Основою методу є осадження випаруваної з молекулярного джерела речовини на кристалічну підкладку. Незважаючи на просту ідею, метод вимагає складних технологічних рішень, а саме:
-
підтримання в робочій камері надвисокого (порядку 10−8 Па);
-
високу чистоту матеріалів, що випаровуються (має складати 99,999999%).