Файл: Углеродные наноматериалы, производство, свойства, применение (Мищенко), 2008, c.172.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.03.2024

Просмотров: 109

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Из таблицы видно, что добавка УНМ "Таунит" в концентрированные формовочные растворы для получения ультрафильтрационных мембран более высокомолекулярного и однородного по молекулярному распределению полисульфона фирмы "Сольвей" повышает их вязкость на 25…30 % ( примеры 1, 2, 5 и 6) и весьма незначительно (на 9 %) при использовании низкомолекулярного полисульфона фирмы "АМОКО" (пример 3 и 4). В менее концентрированных формовочных растворах полисульфона для получения микрофильтрационных мембран добавка УНМ "Таунит" практически не изменяет их вязкости (пример 7 и 8, 10 и 11) и лишь при большом его содержании (11 % мас.) наблюдается повышение вязкости (пример 9).

Добавка УНМ "Таунит" (5…8,2 % мас.) в ультрафильтрационные полисульфоновые мембраны приводит к получению мембран с менее усадочной структурой (37,3 % против 47,2 %, 66 % против 73,7 % у трубчатых армированных мембран и 16,1 % против 66 % у плоских неармированных мембран в виде листов, отлитых на стекле). Такие мембраны имеют несколько меньшую водопроницаемость из-за экранирования пор частицами "Таунита" или из-за образования мелкопористой мембраны.

Добавка УНМ "Таунит" (5,5…11 % мас.) в полисульфоновые и фторопластовые микрофильтрационные мембраны увеличивает их водопроницаемость (примеры 7, 8, 9, 10 и 11), мембраны получаются крупнопористыми с более высокой степенью усадки структуры (примеры 10 и 11).

Испытания полученных трубчатых ультра- и микрофильтрационных полисульфоновых мембран на загрязняемость (пример 1 и 2, 7 и 8) при обработке 2,1 %-ным водным раствором кремнезоля показали, что добавка УНМ "Таунит" в мембраны незначительно влияет на их загрязняемость и селективность разделения по кремнезолю. Некоторое снижение производительности по фильтрату при добавке УНМ "Таунит" в ультра- и микрофильтрационные мембраны, по-видимому, объясняется экранированием частицами "Таунита" пор мембраны.

Из полученных данных следует полезность добавки УНМ "Таунит" в ультрафильтрационные полисульфоновые мембраны, особенно неармированные в виде плоских листов, для стабилизации их структуры, а также при получении крупнопористых микрофильтрационных мембран.

6.10. ФУНКЦИОНАЛИЗАЦИЯ УНМ "ТАУНИТ" ИНТЕРКАЛИРОВАНИЕМ МЕДЬЮ

Заполнение внутренних полостей нанотрубок (интеркалирование) представляет интерес как матричный метод синтеза наноструктурных веществ и материалов. При этом расширяется набор гибридных супер-молекулярных материалов для создания нанокомпозитов и приборов различного назначения.

Заполненные нанотрубки могут стать уникальными катализаторами и сорбентами [34]. Интеркалаты могут находиться в жидком, твердом и газообразном состоянии, причем заполнение может проводиться как непосредственно в процессе синтеза УНМ, так и обработкой после синтеза. Второй способ является более гибким и управляемым [17].

Наиболее привлекательными интеркалатами являются наночастицы меди. Композиты Cu/C широко используются в качестве катализаторов различных химических процессов: окисления пропилена в акролеин, окисления этиленгликоля в глиоксаль, синтеза метанола, метилформиата, а также глубокого окисления углеводородов.

Интеркалирование переходных металлов во внутреннюю полость УНМ и в межграфеновое пространство затруднительно из-за большой величины поверхностного натяжения расплава металлов. Вместе с тем создание таких композитов позволило бы эффективно использовать их в наноэлектронике, в качестве катализаторов, материалов с высокой теплопроводностью, химических сенсоров, сорбентов водорода [35].

В данной работе впервые представлены результаты по получению и исследованию методом просвечивающей электронной микроскопии (ПЭМ) структуры УНМ "Таунит" с интеркалированными наночастицами меди.

Был предложен и реализован следующий подход к организации технологии интеркалирования. Порошок УНМ смешивался c размельченным гидратом ацетата меди (в массовом соотношении 3:1) и

помещался в графитовый тигель. Затем смесь подвергали термической обработки в установке, использующей ИК-отжиг. Установка была оснащена двенадцатью ИК-лампами КГ-220 с суммарной мощностью 12 кВт и максимальной интенсивностью излучения в диапазоне 0,8…1,2 мкм. ИК-лампы и система электрических контактов изолировались от реакционной зоны с помощью кварцевой трубы. Интенсивность ИК-излучения регистрировали с помощью измерения температуры, используя термопару. Для обеспечения равномерного нагрева образца внутренняя поверхность реактора изготовлялась из полированного алюминия. Установка соединялась с компьютером, с помощью которого осуществляли программное контролирование технологии ИК-отжига с точностью измерения температуры и времени, составляющей ± 0,1 °С и 1 с, соответственно. Технические характеристики установки позволили с высокой точностью контролировать процесс образования нанокомпозита (Cu и УНМ). Отжиг смеси УНМ и ацетата меди производился в вакууме (Р = 10–2 мм рт. ст.) при 400 °С.


Структура и фазовый состав образцов УНМ, легированных медью, исследовались методами рентгенографии и просвечивающей электронной микроскопии (ПЭМ). Образцы для электронной микроскопии приготавливались следующим образом. Cu и УНМ "Таунит" предварительно растворяли в этиловом спирте и обрабатывали в ультразвуковой ванне для получения мелкодисперсной суспензии, а затем полученную суспензию наносили на углеродную пленку. Электронно-микроскопи-ческие исследования проводили на просвечивающем электронном микроскопе JEM-100 CXII.

На рис. 6.30 показан типичный вид микроструктуры образцов многостенных нанотрубок после ИКотжига. Как видно на фотографии, образцы представляют собой смесь нанотрубок разного диаметра, от 20 до 80 нм. Отчетливо видны внутренние каналы трубок, подавляющее большинство их свободны от ка- ких-либо включений. Помимо нанотрубок, в смеси присутствуют отдельные частицы меди и оксида меди. На микрофотографиях они выглядят более темными, чем углеродные нано-трубки. Такое различие в контрасте может быть связано с различными

Рис. 6.30. Микроструктура образца УНТ после ИК-отжига

структурными факторами меди и углерода, приводящими к более интенсивному ослаблению первичного электронного пучка частицами меди. Картины микродифракции образца содержат типичные кольца от многостенных нанотрубок (в ряде случаев "текстурированные" кольца, как правило, от "толстых" нанотрубок) и одиночные рефлексы, некоторые из них занимают положения, соответствующие отражениям частиц Cu.

Отдельные нанотрубки содержат включения внутри канала. Эти включения не заполняют канал полностью, а представляют собой отдельные частицы. На рис. 6.31 – 6.33 показаны примеры таких на- но-трубок. Видно, что включения также выглядят более темными. Темнопольные изображения этих частиц получены в рефлексах, соответствующих отражениям частиц Cu. Все это в совокупности приводит к заключению, что внутренние каналы нанотрубок содержат частицы меди.

а)

б)

Рис. 6.31. Микроструктура УНМ, легированного частицами меди:

а – светлопольное изображение; б – темнопольное изображение

а)

б)


Рис. 6.32. Микроструктура УНМ, легированного частицами меди:

а – светлопольное изображение; б – темнопольное изображение

а)

б)

Рис. 6.33. Микроструктура УНМ, легированного частицами меди:

а – светлопольное изображение; б – темнопольное изображение

Определенный интерес представляет вопрос об ориентации частиц Cu в канале нанотрубки, так как эти данные помогают в значительной мере продвинуться в понимании механизма интеркаляции. Если рассматривать дифракцию от частиц, расположенных близко друг от друга, составляющих практически непрерывный стержень в канале нано-трубки, как показано на рис. 6.33 (частицы обозначены стрелками), то оказывается, что отражения от них располагаются вблизи друг от друга, вдоль кольца, соответствующего одному межплоскостному расстоянию. Из этого можно сделать предположение, что внутренняя поверхность нанотрубки, служащая подложкой при кристаллизации наночас-тиц меди, задает им определенную кристаллографическую ориентацию, которая в данном случае одинакова вдоль внутренней стенки нанотрубки и наследует ее изгиб. Косвенным подтверждением этому предположению может служить то, что межплоскостное расстояние (111) меди близко к одному из параметров графитовой сетки (линия (100) графита), из которой "свернута" нанотрубка, налицо некоторое кристаллографическое родство решеток. Стоит отметить, что корреляции между ориентациями частиц, расположенных далеко друг от друга (как на рис. 6.31), не наблюдается.

Таким образом, впервые исследована реакционная способность в гетерогенной твердофазной системе Cu(OOCCH3)2×H2O– УНМ при нагреве, в которой реагенты и продукты образуют самостоятельные фазы, состоящие из очень большого числа структурно упорядоченных частиц. На механизм взаимодействия твердых веществ влияют температура, состав окружающей среды, давление и внутренние факторы, связанные с составом твердого вещества, его структурой и наличием в ней дефектов. В этой системе УНМ представляют исходный реагент в виде атомов С, вторым компонентом является димерный гидрат ацетата двухвалентной меди Cu2(OOCCH3)4(H2O)2, представляющий кластер со связью Cu–Cu.

Рис. 6.34. Химическая структура кластера Cu2(OOCCH3)4(H2O)2

Образование кластера подтверждено тем, что ионы Cu2+ имеют электронную конфигурацию d9 и, следовательно, соли, содержащие такой катион, должны быть парамагнитными. Однако ацетат меди диамагнитен. Следовательно, в изображенном димере (рис. 6.34) существует прямое взаимодействие Cu–Cu, которое приводит к спин-спариванию электронов. Это взаимодействие слабое: расстояние Cu–Cu равно 2,61 Å, что больше, чем в металлической меди (2,56 Å), а энергия связи Cu–Cu составляет лишь около 4 кДж/моль [36].


Согласно экспериментальным данным, при термической обработке рассматриваемой системы, повидимому, происходит твердофазная реакция:

t OС

Cu(CH3COO)2 × H2Oтв + Cтв ¾¾, ¾®Cu тв + 2CH3COOHг - + COг - .

Образующаяся в ходе реакции уксусная кислота, по-видимому, частично разлагается:

t OС

CH3COOH ¾¾, ¾®CH4 + CO2 .

Относительно механизма роста частиц меди в каналах УНМ можно сделать следующие предположения. Во-первых, реакция между гидратом ацетата меди и углеродом может протекать как на внешней поверхности нанотрубок, так и непосредственно в канале. В первом случае, когда твердофазная реакция происходит на поверхности нанотрубки, внутрь диффундируют только атомы меди, образовавшиеся в процессе реакции. Во втором случае для осуществления реакции должна быть обеспечена диффузия молекул гидрата ацетата меди в канал нанотрубки. Кроме того, протекание реакции на внутренней поверхности канала должно быть связано с вытравливанием углерода с внутренних слоев и изменением ширины канала. Однако заметной разницы между толщиной стенок нанотрубки вокруг образовавшейся частицы меди и в соседних местах нанотрубки, свободных от частиц, не наблюдается. Учитывая также, что молекула гидрата ацетата меди имеет значительно большие размеры, чем у атомов меди, и как следствие, меньшие диффузионные параметры, естественно предположить, что осуществляется первый вариант, т.е. реакция на внешней поверхности нанотрубки.

Во-вторых, атомы меди могут проникать в полость нанотрубки как с торцевой, открытой части канала, так и путем диффузии сквозь стенки нанотрубки. Этому способствует специфическое коническое строение графитовых слоев, присущее используемому УНМ "Таунит", так называемая "рыбная кость". В большинстве наблюдаемых случаев частицы меди располагались недалеко от края нанотрубки, что говорит

Рис. 6.35. Зависимость теплоемкости от температуры:

1 – Cu и УНМ; 2 – УНМ

в пользу первого предположения. Однако встречались и другие варианты (как на рис. 6.32), поэтому сделать выбор между этими двумя вариантами пока не представляется возможным.

Таким образом, на базе гетерофазной системы Cu(OOCCH3)2 × × H2O– УНМ при 400 °С впервые был получен новый функциональный материал на основе УНМ "Таунит", внутренний канал которых заполнен медью. В результате внутри УНТ получены квантовые медные провода с длиной 50 нм и диаметром 12 нм.

В настоящее время проводятся интенсивные исследования свойств полученного материала. В частности, установлен факт существенного (примерно в 2 раза) роста его теплоемкости (рис. 6.35).

6.11. ДРУГИЕ ПРИМЕНЕНИЯ УНМ "ТАУНИТ"

Чрезвычайно малые размеры, необычная структура и, как следствие, уникальные физикомеханические, химические и электронные свойства УНТ открывают перед ними широкие возможности внедрения в реальные производства.


Области применения УНТ можно условно разделить на две группы: применение в виде сравнительно массивных изделий или деталей ("работает" множество УНТ) и использование в миниатюрных изделиях или устройствах ("работают" индивидуальные УНТ). В первом случае это наполнители в различных композитах (легких, прочных, при необходимости тепло- и электропроводных, поглощающих энергию удара, электромагнитное и другие виды излучений); материалы для химических источников тока и аккумуляторы газов, носители каталитических систем и адсорбенты. Во втором случае – это электронные приборы и устройства, включая сверхмалые и сверхбыстрые компьютеры, автоэмиссионные катоды, зонды в сканирующих электронных микроскопах, высокочастотные резонаторы, нанопипетки и т.д.

В первую очередь выделим направления использования УНМ "Таунит", так как именно этот материал синтезирован на оборудовании и по технологии, разработанными авторами.

Среди "макронаправлений" следует выделить создание пряжи и тканей из УНМ с различным функциональным назначением [37]. Для этих целей УНМ синтезируют на специально подготовленной подложке и получают массив вертикально ориентированных трубок подобно полевой траве. Как показано авторами работы [38], такой массив весьма удобен для использования в стандартной технологии прядения. Этот процесс весьма напоминает процедуру изготовления шелковых нитей из кокона шелкопряда. Матрица свободно стоящих многослойных УНТ диаметром около 10 нм и высотой около 100 мкм скручивается в пряжу длиной 30 см и диаметром 200 мкм. Согласно оценкам, из матрицы площадью 1 см2 может быть сделана пряжа длиной 10 м. Изображения в сканирующем электронном микроскопе показывают, что пряжа состоит из параллельных нитей диаметром в несколько сотен нанометров. Для демонстрации возможностей прикладного использования полученной пряжи из нее была изготовлена нить лампочки накаливания, укрепляемая между двумя металлическими электродами.

Описанная пряжа обладает способностью поляризовать оптическое излучение, пропуская через себя только такие фотоны, направление поляризации которых параллельно оси нанотрубок. Отличительной особенностью нитей, скрученных из УНТ, является их способность к сохранению угла скручивания после снятия нагрузки и даже после разрезания нити.

Смачивание нитей на основе УНТ поливиниловым спиртом придает им высокие электрические характеристики. Так, нити диаметром 2…10 мкм имеют удельное сопротивление около 0,003 Ом × см при комнатной температуре [39].

Результаты описанного выше исследования указывают на хорошие перспективы использования пряжи и текстильных изделий на основе УНМ "Таунит" для создания проводящих тканей, питания искусственных мышц и в других направлениях, где необходим материал, обладающий высокой удельной прочностью в сочетании с пластичностью и электропроводностью.

Следующим шагом на пути создания технологии получения материалов на основе УНМ стала разработка процесса изготовления ткани. Обычный способ получения ткани из УНМ основан на использовании старинного опыта изготовления бумаги и включает в себя недельную процедуру фильтрации УНМ, диспергированного в воде, с последующей просушкой слоя, снятого с фильтра [40, 41]. Дальнейшее развитие этого подхода [42] привело к разработке высокопроизводительного способа изготовления широкого прочного прозрачного полотна из УНМ. В качестве исходного материала использовались высокоориентированные МУНТ диаметром около 10 нм и длиной 70…300 мкм, синтезированные в результате термокаталитического разложения ацетилена. При этом для получения полотна длиной 3 м и шириной 5 см достаточно 1 см2 массива УНТ высотой 245 мкм.

Некоторое представление о свойствах такого полотна дает приведенная на рис. 6.36 фотография двумерной упрочненной структуры, изготовленной посредством взаимного наложения под углом 45° четырех слоев ткани из УНМ.

Сочетание высокой прозрачности и хорошей электропроводности с выдающимися прочностными качествами делает такое полотно перспективным материалом для использования в мониторах, видеомагнитофонах, солнечных батареях, твердотельных источниках света и других приборах.